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Chapter 1

Introduction

Developing autonomous vehicles is a highly important topic in automotive in-
dustry and the field of intelligent transportation systems. A variety of classical
control strategies have already proved their merits in this field. However, with the
increase in the non-linearity and complexity of the driving system’s environment,
the efficiency of these approaches drop off due to the limitations of their comput-
ing capabilities with such highly complex systems or to lack of efficacy related
to maintaining the balance between driving performance and driving smoothness.
For example, model predictive control (MPC) is very well known classical control
strategy that is used for steering system due to its abilities in solving the opti-
mization problem in real time, handling the system constraints and dealing with
changing dynamics of the vehicle. However, its efficiency is negatively affected in
high complex environment and may not be able to meet the real time require-
ments due to the fact that it solves the optimization problem at each time step
which massively increases the computational loads. As a result, developing robust
systems becoming more crucial and remains an open challenge for researchers and
automotive companies alike. The motivation in this work is to contribute to the
optimization of the autonomous vehicle driving system. we tackled this problem
in two different aspects. In the first part, we focused on optimizing the the im-
plementations of the classical control, precisely MPC control on limited resources
platform (low-end FPGA). It is certainly noticeable that the use of artificial intel-
ligence (Al) in this field is unavoidable due to the efficiency that has been achieved
in different fields. In the second part we focused on taking advantage of machine
learning algorithms to provide an efficient alternative solutions to the classical
control. In addition to optimize the deployment of DNN on FPGA using a new

innovative tool.



Autonomous vehicles have been researched since 1980, for the time, these re-
searches represented impressive technological advancements. In the 1980s, the
Defense Advanced Research Projects Agency put its first 600-meter-distance pro-
totypes on the road. In 2004, the same agency introduced the "DARPA Chal-

" which encouraged institutions to innovate in this area. The objective was

lenge,'
traveling 240 kilometers through the Mojave Desert without human assistance.
Over time, more innovations have gained popularity, and diverse companies and
research centers have taken up the challenge of developing a fully autonomous ve-
hicle. Tesla, Waymo, Zoox and automakers like Mercedes and Ford are currently

the most well-known in this field [BGC*21|, [TMD™06].

The automotive industry has agreed on a definition of autonomous driving, and it
is best summarized as" the ability of the vehicle to drive partly or fully without
or with limited human interaction". According to the Taxonomy and Definitions
for Terms Related to On-Road Motor Vehicle Automated Driving Systems "SAE-
J3016", vehicle autonomy is divided into six different levels, from fully manual
(level 0) to fully autonomous (level 5). Level 0 (No Automation) depends on the
human driver to perform all the driving tasks, it is manually controlled. Level 1
(Driver Assistance) is considered as the lowest automation level, where the driver
has full responsibility, but some assistant driving systems are included for cer-
tain circumstances. Level 2 (Partial Automation) combines different automated
functions which can be working simultaneously, such as steering and acceleration
tasks, but the driver is still involved in the driving tasks such as performing the
maneuvers and has to monitor the environment all the time. At Level 3 (Con-
ditional Automation) the vehicle has the capability of detecting the surrounding
environment and making decisions in normal conditions, but the necessity of the
driver still exists, meaning that the driver has to be ready to take control over
the vehicle at any time. At Level 4 (High Automation) the vehicle performs all
the driving tasks in most circumstances, and the driver still has the option to
take control. At Level 5 (Full Automation) the vehicle is capable of performing
all driving tasks in all circumstances, and the driver has the option to manu-
ally override [Com14|, [UDoT18|. Generally speaking, the vehicle needs to be
able to coordinate and effectively implement functions under three main pillars in
order for it to be able to partially or fully drive. Observing the driving surround-
ings to detect risks and emergency scenarios, then automatically taking action
to protect the passengers and eliminate potential collisions. The Advanced Driv-
ing Assistance Systems (ADAS), which include functions like driving assistance,

collision protection, and emergency breaking keeps track of safety-related issues.



The ADAS technologies are anticipated to advance and play a crucial role in the
autonomous driving system optimization. Autonomous vehicle are made up of
three main parts, the vehicle, driving software, and hardware, where it depends
on sensor, actuators, complex control algorithms, and powerful processors in or-
der to perform its tasks [DTP21]. The core functions of the autonomous vehicle
can be categorised into three main categories: perception, planning, and control.
The environment perception provides the vehicle with the required information
about the surrounding driving environment, including the vehicle’s location, the
drivable areas, the velocity, etc. Different sensors and tools can be implemented
to tackle the perception task, such as using ultrasonic sensors, cameras, LiDARs
(Light Detection And Ranging), or even a combination of these (sensor fusion) to
decrease the uncertainty of the data. Based on the collected data, the best scenar-
ios are obtained and the required control actions are made in the planning module
in order to drive the vehicle efficiently to the desired location. In the control
function, the commands are sent to the actuators to put the control strategy into
action [BSDD17|. Adaptive behaviour in autonomous vehicles provide the ability
to changes their behavior parameters in accordance with their environment, while
a the autopilot technology is used to automatically manage a vehicle’s operation
without any manual control. Essentially, the core of autonomous driving is the de-
velopment of systems that can automate the function of driving. Despite the fact
that autonomous vehicles have been around for a while, the demand to develop

one that is completely functional has accelerated in the past decade.

In a scientific point of view, the work presented in this document globally pro-
poses a research, in the context of automated driving and precisely a contribution
in automated steering and safety. After the introduction where an overview of the
autonomous vehicles is presented, the necessary theoretical and hardware back-
ground of the different aspects of the researches including control strategies for
path tracking, Re-configurable Computing and Hardware Acceleration, and the
recent machine learning-based applications in the field are presented in the second
and the third chapters. Then comes to the contribution part which is provided
in the next 4 chapters. The contributions in chapter 4 can be summarised in two
main points. First, studying, analysing and improving the implementations of the
MPC controller for the task of automated driving especially with changing dy-
namic systems. Second, the use of rapid prototyping method (hardware/software
co-design) to deploy the design on FPGA (hardware-embedded system). The sug-
gested solution in chapter 5 is to develop a deep neural network model based on
the behavior of the traditional MPC controller so that the DNN model can replace



the MPC controller in high complexity driving system environments. Additionally,
one of the motivations behind the work is to propose an alternative tool to imple-
ment deep neural networks on low-end FPGA. The main contributions in chapter
6 can be summarized in two main points. The first is leveraging the advantages of
reinforcement learning and supervised learning by combining them in one control
model in such a way that the reinforcement learning-based model optimizes the
actions that are taken by the supervised neural work (DNN) model. The second
contribution comes in enriching the research on RL algorithms and paving the
way to bring RL closer to real-world implementations. The contribution of chap-
ter 7 comes in the orientation of enriching the studies that have been conducted
on reinforcement learning method in the frame of safety automated driving in or-
der to validate its efficiency and stability compared to the used classical control

approaches. The last chapter summarise the entire work and the provided theses.



Chapter 2

Intelligent Solutions for
Autonomous Vehicle Driving

System Optimization

2.1 Model Predictive Control for Autonomous Vehicle Steer-

ing System and FPGA Implementations

The autonomous vehicle steering system, a multi-input multi-output (MIMO) sys-
tem, is challenging to design using traditional controllers due to the interaction
between inputs and outputs. Designing a larger system increases the controller
parameters requiring tuning. Model Predictive Control (MPC) overcomes this
problem, as it is a multi-variable control method taking into account the inter-
actions of the variables in the target system. Achieving a high safety level is
also critical for autonomous vehicle systems. This can be provided by an MPC
controller, which can handle constraints such as maintaining a safe distance from
other cars. The wider applicability of the Model Predictive Controller calls for
more efficient hardware architectures for implementation. The aim of this work is
to achieve optimal implementation of the MPC controller by increasing the com-
putational speed in order to reduce execution time for optimization. This chapter
discussed the implementations of model predictive controller for autonomous ve-
hicle steering task. To deal with changing dynamics systems, a linearized function
was used to adapt to the new changes and provide accurate prediction at each time
step (Adaptive MPC). One of the most effective solutions, in order to achieve MPC

implementations for embedded system applications that have constraints related



to the computational time, is the use of hardware acceleration. In this context, the
deployments of an embedded MPC controller can be achieved using reconfigurable
hardware such as Field Programmable Gate Array or System on Chip, which is
popular due to its high computational capabilities, parallel processing and devel-
opment framework [LYLMO09]. In this context, the main contributions of this work
can be summarised in two main points. First, studying, analysing and improv-
ing the implementations of the MPC controller for the task of automated driving
especially with changing dynamic systems. Second, the use of rapid prototyping
method (hardware/software co-design) to deploy the design on FPGA (hardware-
embedded system). The research applied functional on-target rapid prototyping
using Embedded Coder and HDL coder. The suggested implementation method
is based on taking the optimization problem of the control method through MAT-
LAB Simulink, Fixed-Point Designer, Embedded Coder, and HDL Coder. The
suggested method allows the authors to focus on the verification, validation, and
test of the embedded system rather than programming, which in turn gives the
ability to refine the design, tune the MPC controller parameters and see the results
in the real time. Figure 2.1 presents the MPC controller model that is designed for
linear systems (constant dynamics system), while figure 2.2 presents the Adaptive
MPC controller model that is designed for nonlinear systems (changing dynamics
system) with the Update Plant Model block.

Lateral Position

MPC
& Yaw angel

Custom Steering Angel

Vehicle

Reference Controller

FIGURE 2.1: MPC controller model for linear system (Constant longitudinal velocity)

The steering system was implemented on System on Chip target using embedded

coder and HDL coder. The working methodology is presented in figure 2.3.

MPC controller drives the vehicle to the target point along the desired trajectory
by controlling the lateral deviation d and the relative yaw angle 6 of the vehicle.
Maintaining these variables to be zero or as close as possible to zero is the online
optimization problem that the MPC controller must handle in real time. Since
MPC is a model-based controller, the design process has two main steps, designing
the plant model (the vehicle) first and then designing the MPC controller in the
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FIGURE 2.2: Adaptive MPC controller model for nonlinear system (varied longitudinal
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second step. The design process includes tuning the parameters of the controller

and formulating the operating conditions that are imposed by the system in the

form of soft and hard constraints.

The implementations and testing of the designed modes ( MPC and Adaptive
MPC) using MATLAB Simulink show that, MPC successfully drive the vehicle
along the desired trajectory in the case of constant dynamics ( constant longitu-
dinal velocity), while it failed to handle the system with changing longitudinal
velocity. On the other hand, Results demonstrate that using the adaptive MPC

controller for the changing dynamics system yields good performance in terms of

tracking the reference trajectory.

velocity)

—®| Bit-stream generation

\

MPC Software design
and test
Xilinx SDK

Download to
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HIL - Results to MATLAB

ZedBoard

FI1GURE 2.3: The design workflow of the proposed solution




Both models (MPC and Adaptive MPC controller) were implemented on FPGA
and the results were compared with the results obtained using MATLAB Simulink.
The experiments showed slight differences in terms of performance between the
implementations (Simulink and FPGA). The implementations of MPC and Adap-
tive MPC controllers on FPGA were analyzed also in terms of resource utilization
and power consumption. The results shows that 91% of the total power was used

by the Processing System (PS), whereas only 9% was used by Programmable logic
(PL).

2.2 Deep Learning-Based Control Strategy for Automated
Driving and FPGA Deployments Using a Novel Auto-

matic IP Generator Tool

This chapter concerns the inefficiency of the classical MPC controller with the
complex automated driving environment. A deep neural network model-based
model was suggested as an efficient alternative to the classical MPC controller.
The DNN model was trained to imitate the behaviour of the MPC controller. The
designing, testing and validation processes were discussed in details. Also, this
chapter concerns the deployment of the DNN model on low end FPGAs, where
a new tool based on the Xilinx System Generator was developed to perform and
optimize the deployments of the DNN model on FPGAs. Figure 2.4 shows the
overall design of the MPC, the plant model and the inputs/outputs signals.

v ]
MPC Steering angle Vehicle model
Controller
Lateral deviation
Yaw angle
Yaw rate
Lateral velocity

FIGURE 2.4: General MPC and plant model diagram.



After designing, implementing and testing the MPC controller, the suggested DNN
model is designed. Designing the deep neural model goes through several steps in-
cluding designing the model architecture, defining the training options, and prepar-
ing the training data. The DNN model is developed using Matlab environment.
The suggested architecture of the DNN controller consists of 8 layers which are the
input layer, 6 fully connected layers (FC) and each FC layer has activation func-
tion (ReLU). The output layer is a regression layer which holds the loss function
(mean-squared-error). Six observations are determined as inputs: yaw angle (6),
lateral velocity (v,), lateral deviation (d), yaw rate (w), the curvature (p), and the

previous control action ( d). The steering angle ¢ is the output (control action).

The detailed structure is shown in figure 2.5.

Input Layer

Hidden Layers (6)

(Fully connected)

QOutput Layer

steering angle &

FiGURE 2.5: The DNN model architecture representation.

The trained neural network was tested using the testing data set. The perfor-
mance of the DNN model is evaluated comparing to the performance of the MPC
controller, where the RMSE between the outputs of the controllers is calculated.
The obtained root mean square error by the end of the testing process was: RMSE
= 0.011228, which is a very small compared to the range of the steering angle [-60
— 60]°. This small value indicates to that the DNN model successfully imitated
the behavior of the MPC controller.

The procedure of the neural network’s IP auto-generating has two main steps,
as shown in figure 2.6. First, the user is asked to define the parameters con-
cerning the DNN (the structure, the data type and the activation function) and
the targeted computational HW and the values of weights and biases parameters
are imported from the pre-trained DNN. Then comes the step of setting the in-
put/output interfacing mode. After setting up the DNN-IP preferences, the XSG
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automation part begins, which consists of invoking the elementary computational

components needed for each neuron, linking the components and the neurons,

setting the weights and biases accordingly, implementing the 1/0, and then gen-

erating the IP. Figure 2.7 shows the auto-generated DNN circuit on the Xilinx

System Generator to be implemented on a low-end FPGA.

Setup: DNN structure
Data type
Activation function
Hardware target

= Import weights and biases = Set I/O interfacing mode =————

Set of the elementary
P components for each
neuron

Linking the
components

‘Weights and biases
according to the
trained DNN

Implementations of
1I/0 interfacing
mode

IP generation

FIGURE 2.6: Flow of deep neural network IP automated generating.

T
|

F1GURE 2.7: The auto-generated deep neural network structure on Xilinx System
Generator to be implemented on a low-end FPGA.
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Figure 2.8 shows the detailed steps of "Automatic DNN IP Generator" implemen-

tation.
Design of MPC Train the DNN
controller model

Validate and Validate and

test MPC design test DNN design
l l HIL — results in
MATLAB
Design of DNN Run DNN IP
model generator '>
Generate Run hardware R FPGA

training dataset co-simulation - deployment

FIGURE 2.8: The implementation steps of the solution.

The obtained results show that the suggested DNN model successfully and ef-
ficiently imitates the behavior of the classical MPC controller and reduced the
execution time by 3 to 4 times. The trained DNN and the MPC controller behave
similarly with very small output deviation, and the maximum difference is approx-
imately 0.0094 rad (0.53 degrees). Both controllers were able to follow the desired
trajectory by driving the lateral deviation and yaw angle to be very close to zero.
Additionally, and taking into consideration the control system characteristics, the
results clearly show that both controllers were able to reach the stable state at
almost the same time with the same amount of overshooting. As a result, the tradi-
tional model predictive controller can be replaced efficiently by the suggested DNN
model. On the other hand, the trained DNN model was efficiently deployed on
low-end FPGA Xilinz Kintex-7 FPGA KC705 using floating and fixed-point data

type, achieving satisfactory performance and meeting the design’s constraints.

2.3 A Hybrid Machine Learning-Based Control Strategy for

Automated Driving Optimization

This chapter concerns the use of machine-learning algorithms for automated driv-
ing, where a new method is introduced to achieve performance optimization. The
new method leverages the advantages of supervised learning and reinforcement
learning algorithms in one control model in such a way that the reinforcement
learning model optimizes the actions that are taken by the supervised neural work

(DNN). To sum up, three different machine learning-based models were developed



12

to perform an autonomous driving task: a supervised learning model (deep neural
network - see chapter 5), a reinforcement Deep Q-learning model (DQN), and the
hybrid model. The DQN was structured similarly to the DNN and trained by
directly interacting with the driving environment. The hybrid model is a combi-
nation of supervised and reinforcement learning algorithms. The behaviors of the
suggested models were compared based on several performance indicators, includ-
ing the ability to drive the vehicle along the desired trajectory, the response time,
and the smoothness of the driving system. The combined method is expected to
provide an optimized solution, as the actions that are taken by the decision maker
(trained DNN) will be evaluated and optimized by another neural network in order
to minimize errors. Additionally, the combined model will be able to deal with
and adapt to new cases that have not been faced during training. The desired
models are designed taking into consideration the same dynamics of the vehicle,
the constraints, and the environment conditions that were used to design the DNN
model in chapter 5. The designing processes went through several steps, preparing
the environment, creating and training the agents, and finally testing and evalu-
ating the behaviours. The suggested hybrid model is designed in a way that the
trained DNN model is used as a decision-maker (Actor) in a Deep Deterministic
Policy Gradient (DDPG) reinforcement learning model. To create the agent, be-
sides having the trained DNN model as an actor, the critic is created based on
the actions-observations specifications, where its neural network is structured to
accept seven inputs (state-action) and one outputs (the corresponding expected
long-term reward Q(s, a | ®9)), and 3 hidden layers. Figure 2.9 shows the detailed
structure of the combined model.

Actor network (s | 8#) Critie network (s, @ | (6%)

Input Layer Input Layer

Hidden Layers (6) Hidden Lavers (3)

(Fully connected) (Fully connected)

Cutput Layer Output Layer

steering angle & Q(ss, a;)

update the actor network vsing policy gradient ( Vgu J )

FIGURE 2.9: The structure of the actor-critic networks — combined model
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On the other hand, the suggested DQN model is structured and designed to ac-
cept the state from the environment as an input (vector with 6 observations) and
outputs the estimated Q-value of each possible discrete action that can be taken at
that state (vector of n=121 Q) values). The detailed structure of the DQN model

is shown in figure 2.10.

Input Layer

Hidden Layers (3)

(Fully connected)

Output Layer

Q(s.ay) Q(s.az) Q(s,a,)

FIGURE 2.10: The reinforcement DQN structure

The performances of the suggested hybrid (RL-supervised) model is compared to
the DNN and DQN models to evaluate the achieved improvements compared to
the other machine-learning-based algorithms. The obtained results show that the
hybrid model responded in a way that improved the smoothness of the driving sys-
tem by reducing the over shootings. It drove the lateral deviation to be very close
to zero (0.003 m) in a reasonable time, compared to the DNN model which achieved
0.0009 m as a final value at almost the same time but with higher overshooting
and thus higher lateral deviations. The DQN model was not as efficient as the
other models, where its behavior led to higher overshooting and drove the lateral
deviation to a final value of 0.01 m. As a result, and taking all the performance
indicators into consideration, one can state that the combined model provided the
best result and achieved the expected optimization by driving the vehicle to the
reference target more smoothly and within a reasonable time. This work shows
the efficiency of combining supervised and reinforcement learning to leverage the
advantages of both algorithms, where supervised learning speeds up the learning
process and reinforcement learning improves self-adaptation to new states, which

in turns makes it more efficient within the complex driving environment
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2.4 Contribution to Automated Driving Safety Using Rein-
forcement Learning and FPGA Deployments

This chapter concerns the necessity of developing an alternative control approach
for safe automated driving that has the capability to deal efficiently with the
complexity, non-linearity and uncertainty of vehicle dynamics. Even with the suc-
cessful implementations of the reinforcement learning in real world for different
applications, it is still not commonly used compared to the supervised and un-
supervised learning. In this work, a reinforcement learning-based framework is
suggested as an alternative solution to the classical control for the application of
maintaining a safe distance in autonomous driving system. The efficiency and
stability of the suggested model is evaluated compared to the very well known
model-based control (MPC) which was developed and implemented for the same
task and under the same conditions and constraints. Additionally, in order to verify
the efficiency of the suggested model in practice, the trained RL model was de-
ployed and tested on low end FPGA-in-the-loop. MPC and RL -based controllers
are designed to respond to environmental changes using two control modes, speed
and maintain modes. In the case where the relative distance (d,.) between the
two vehicles (ego vehicle and leading vehicle) is greater than the reference safety
distance (dsqf), the controller applies the speed mode that makes the ego vehicle
drive at the reference velocity. In the case where the relative distance is less than
the safety distance, the controller switches to the maintain mode, and the vehicle

drives at the speed of the leading vehicle to keep a safe distance (figure 2.11).

| Initialization I

\d

| Receive the observations for the environment |

l

Calculate the safefy relative distance between the
two vehicles

No Yes

Apply maintain control mode | Apply speed control mode

o

FIGURE 2.11: The schema of applying the control modes.
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Designing the MPC controller went through several steps, including vehicle model
design, determining the input/output signals and the design parameters of the
control system as it is shown in figure 2.12 and table 2.1. The measured outputs are
used for state estimation, while the manipulated variables are the optimal control
actions. The MPC design parameters and the control constraint are presented
in table 2.2. Figure 2.13 shows the overall workflow of the MPC-based control

system.

1 manipulated variable

(accego )

MPC Model

( Vegor dpe )

1 measured disturbance

1
1
1
1
I
1
: 2 measured outouts
1
I
1
1
1
I
1
1

(Vprcd )

FIGURE 2.12: MPC plant model- Inputs/outputs.

TABLE 2.1: Inputs/Outputs signals of MPC controller.

Signal type Parameter | unit Description
Measured outputs Vego m/s Lor;gltudmal vel.omty
(MO) of the.ego vehicle
d m The relative distance between the
ref proceeding and the ego vehicles
Measured disturbance Longitudinal velocity of the
(MD) Upred m/s proceeding vehicle

Manipulated variable

(MV) acCego m/s? acceleration ' deceleration
Reference velocity in speed
References Ure m/s mode
dsaf m The reference safety distance
TABLE 2.2: MPC design parameters.
MPC controller parameters
Sample time (7%) 0.1s
Prediction horizon (P) 30
Control horizon (M) 3
Control action constraints
Acceleration [-3, 3] m/s?

In this work, the Deep Deterministic Policy Gradient algorithm is used to de-
sign the reinforcement leaning controller. This algorithm uses two different deep

learning-based approximators, the actor and the critic. The design process went
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Relative distance

e
MPC Control i
Reference Preceding vehicle
velocity
Current
current .
L position
Ego vehicle position
Acceleration
MPC m " current m Current
velocity velocity

‘\L“-

FIGURE 2.13: Overall diagram of the control system-MPC model.

Relative velocity

through several steps, starting from preparing the environment, designing the neu-
ral networks of the actor and critic, creating and training the agent, and finally
running, testing and validating the model. The observations of the environment
are determined to be the vehicle velocity (veg,), the velocity error (ve.) and the
integral velocity error (p.,). Velocity error represents the difference between the
reference and the vehicle velocity. The acceleration constraint is determined to be
in the same range as that of the MPC controller, [-3, 3] m/s?. Figure 2.14 shows
the neural network structure of the actor-critic approximators. Figure 2.15 shows

the overall workflow of the RIL-based control system.

Hidden Layers
“@
(Fully connected)

Hidden Layers
@

(Fully connected)

Acceleration
—_—

Output Output

Acceleration Q(s.a)

L update the actor network using policy gradient ( Vg« J ) 4J

FIGURE 2.14: RL model: actor — critic neural network structure.

Due to the fact that the reinforcement learning algorithm depends on trial and
error, it is safer to test the design using the MATLAB Simulink first, before the
implementation on the real SOC. For this purpose, multiple simulations were per-

formed and the final trained policy that meets the requirements is taken to the
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Iy
RL-Based Controller
Current
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Acceleration EEE—
2 RL m Current ®
|, Signals Processing Reward Agent . e
Ego vehicle R .
Preceding | Current
vehicle velocity

FIGURE 2.15: Overall diagram of the control system-RL model.

next step to be deployed on the target FPGA. The suggested RL-based control
model is deployed on a low-end SOC (ZedBoard). The deployment process went
through several steps (see figure 2.16). In the first step, the trained policy is ex-
tracted from the trained agent (the Simulink model) and represented in C code
generated using MATLAB Embedded Coder. The generated code accepts the en-
vironment observations as inputs, and outputs the optimal action for the current
state based on the trained policy. In the next step, the hardware configurations
were prepared in order to perform the communication between SOC and MAT-
LAB Simulink. The deployment is performed by downloading and running the
generated code on the target SOC. Running the model on Zedboard goes through
the following cycle: SOC receives the signals from MATLAB Simulink through
the communication channel, executes the algorithm, outputs a control action (ac-
celeration or deceleration), and then sends it to the Simulink model to update the

state of the driving environment.

The results show that both controllers responded efficiently to the environment’s
changes based on the control modes and the design specifications. In detail, at
the beginning the RL controller drove the vehicle from the initial state to the
reference velocity in approximately 4.5 s, while it took around 6.2 s in the case of
MPC controller. The results also show a stable behaviour of the RL model which
responded faster to the environment changes compared to the MPC controller.
RL-based model improved the response time with 1.75 s in average. On the other
hand, the behavior of the RL controller shows a slight higher overshooting in
terms of following the reference speed especially against the initial state, where
the maximum overshooting was approximately 1.3 m/s. As a conclusion, the

results demonstrate the advantage of the reinforcement learning model in term
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Simulink Model
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RL Controller
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Policy /A
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A4

Generated Code
(C code)

Download to ZedBoard

FIGURE 2.16: RL training algorithm.

of the ability to predict and follow the changes in the environment state faster
than the MPC controller. This result is compatible with the fact that solving
the optimization problem using a trained neural network is faster than solving an

online quadratic problem at each time step (MPC controller).



Chapter 3

Summary

Given the great importance of the autonomous vehicles in reducing the traffic
risks and accidents on the roads resulting from human errors, engineers in the
automobile sector have worked extremely hard over the past decade to develop
and implement control strategies in an effort to improve road transportation and
reach a fully autonomous and safe vehicles. Without a doubt, the next few years
will witness a significant increase in fully autonomous vehicles on the roads. The
main motivation of my doctoral work is to contribute to this efforts by making
use of the advanced technologies and algorithms to achieve the desired optimiza-
tion. This contributions can be summarised into four main parts. It is known
that the efficiency of the classical control strategies drops off in highly complex
environments due to their weakness in handling the dynamically changing systems
and high processing demands, especially when it comes to the limited resources
of embedded computing platforms such as system-on-chip and field-programmable

gate array.

In the first part, I addressed these problems for model predictive control as on of
the most traditional control strategies that is used for automated steering task.
The aim was to optimize the implementations of MPC controller. To deal with
dynamic changes systems, the adaptivity concept was used, where the optimiza-
tion problem remains the same (same number of states and constraints) but a
new linear model is used at each time step to obtain an accurate prediction based
on the new conditions, and that is called adaptive model predictive control. The
obtained results showed that adaptive MPC was able handle the chaining dynam-
ics and yields a good performance in terms of tracking the reference trajectory.
In the second section of this work, I applied functional on-target rapid prototyp-

ing using embedded coder and HDL coder (hardware/software co-design) for the
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implementation of embedded systems dedicated for digital signal processing con-
sidering performance, execution time and resources consumption. The suggested
implementation method is based on taking the optimization problem of the con-
trol method through MATLAB Simulink, Fixed-Point Designer, Embedded Coder
and HDL coder, which allows the authors to focus on the verification, the vali-
dation and the test of the embedded system rather than programming, which in
turn gives the ability to refine the design. Different strategies were implemented
to achieve the resource optimization, where the implementations involve Logical

optimization, placement of logic cells, and routing the connections between cells.

In the second part, I worked on developing DNN-based controller as alternative
to the classical MPC in the frame of automated driving task, suggesting that the
use of a deep neural network can significantly increase efficiency and inevitably
result in reduce the time and the complexity of implementations. The suggested
DNN model, was designed and trained to imitate the behaviour of the traditional
MPC. Considering the crucial function that deep neural network hardware im-
plementations play, a new automatic IP generator has been developed in order
to deploy and optimize the implementations of the DNN based-models on Field
Programmable Gate Array. The performance of the suggested DNN controller
after being deployed on low end FPGA was evaluated, and the obtained results
show that it is successfully imitated the behaviour of the classical MPC, provided

a good performance, and improved the execution time ( up to 4 times faster).

In the third part, I suggested a new hybrid machine-learning model that combines
two controllers (DNN-based controller and RL-based controller) in one model.
The idea behind the hybrid model is to leverage the advantages of the supervised
learning and reinforcement learning algorithms in one control model in a way that
the RL controller optimizes the actions that are taken by the supervised DNN
controller that is developed in chapter 5. The efficiency of the hybrid model was
evaluated compared to the supervised DNN and reinforcement DQN models. The
obtained results show that the combined model was able to provide the desired
optimization by driving the vehicle to the reference speed more smoothly and
within a reasonable time. These results proved that the suggested hybrid mode
has better generalization capability within the complex driving environment. The
supervised learning speeds up the learning process while the reinforcement learning
improves self-adaptation to new states that the model was not faced with in the

training process.
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Although the promising results achieved by the implementations of reinforcement
learning algorithms in different field, RL still an emergent field and the real-world
applications still very much open challenge and has not yet been applied to practice
as successfully as supervised and unsupervised learning. In this context, in the
fourth part of this work, I suggested a reinforcement learning-based framework as
an alternative solution to the classical control for the application of maintaining a
safe distance in autonomous driving system, which enriching the research on RL
algorithms and paving the way to bring RL closer to real-world. Additionally, RL
model was deployed on a low-end FPGA/SOC after being verified in MATLAB
Simulink. In order to perform the deployment, first I extracted the policy from
the agent after being trained and I represent it as a C code which was downloaded
and tested on SOC. The obtained results showed that the RL model was able
to handle the environment changes more efficient compared to MPC controller
and improved the response time with 1.75 s in average. Additionally, the method
that I used to perform the deployment is evaluated, and the results showed the
efficiency of this method, where the RL model provided a stable behaviour after

being implemented on FPGA compared to the Simulink behaviour.

Table 3.1 summaries behaviour comparison between the suggested machine learning-
based controllers and the traditional MPC in the frame of automated driving task,
taking into concentrations the overshooting, settling time, and the execution time
as reference indicators. All the controllers were evaluated under the same envi-

ronment, initial state, conditions, and constraints.

TABLE 3.1: Summary of the suggested ML-Based controllers compared to traditional
MPC for the task of automated driving

Application Controller Observation Overshooting (m) | Settling Time (s) Execution Time (s)
Lateral deviation 0.036 0.60
MPC Controller 1.54
Yaw Angle 0.093 1.05
Lateral deviation 0.035 0.61
DNN-Based Controller 0.34
Yaw Angle 0.094 1.03

Automated driving

Lateral deviation 0.182 1.3

DQN - Based Controller 0.37
Yaw Angle 0.082 1.2
Lateral deviation 0.0034 0.5

Combined Controller (DNN-RL) 0.23

Yaw Angle 0.0576 1.3
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3.1 Theses

Thesis I

I gave a methodology for adaptive MPC' development for the changing dynamics
system, which significantly improved the behaviour of the controller in terms its
ability to predict and follow the dynamic changes of the system efficiently after
reaching the steady state. Resulting to improve the performance and the smooth-
ness of the driving system. To perform embedded system’s deployment, I applied
and analyzed different implementations of the proposed method from source utiliza-
tion point of view. The implementations included logical optimization, placement

of logic cells, and routing the connections between cells.
Related Publications: [RBV20], [RV20], [BRV20]

Thesis 11

I proposed deep neural network-based control strategy as an alternative solution
to the classical MPC' controller for automated driving task aiming to reduce the
complexity of solving the online-optimization problem, therefore the execution time.
I designed and trained the DNN-based controller to imitate the behaviour of the
traditional MPC' controller. I also proposed a new automatic intellectual property
generator tool, which s developed not only to perform but also to optimize the
deployments of deep neural networks on low-end Field FPGA.

Related Publications: [RBV21], [KRVB20a], [ch5]

Thesis 111

I proposed machine learning-based control strateqy that combines supervised learn-
ing (DNN model) and reinforcement learning (RL-model) algorithms in one con-
troller, aiming to achieve the optimization by leveraging the advantages of these al-
gorithms in a way that the RL controller optimizes the actions that are taken by the
supervised DNN controller. I evaluated the efficiency of the hybrid model compared
to the supervised DNN and reinforcement DQN models which are developed for the
same task. The combined model provided the best result and achieved the expected
optimization by outputting accurate control actions which reduced the overshooting
behaviour, resulting a significant improvement in terms of the smoothness of the
driving system. Related Publications: [ch623], [KRVB20b], [RBV21]

Thesis IV
I proposed reinforcement learning-based control strateqy for the task of maintaining
a safe distance in the frame of automated driving system. I also proposed a method

to deploy the developed model on low-end FPGA. The method extracts the policy of
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the trained RL-agent and converts it to a C code that is downloaded and run of the
target SoC (FPGA). Compared to the traditional MPC controller, the results show
the superiority of the reinforcement learning - based model in term of the ability
to predict and follow the changes in the environment state and improvement in
response time (1,75 s in average). This work contributed to enriching the research
on RL algorithms and paving the way to bring it closer to real-world.

Related Publications: [RV23]
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