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1
Introduction

Cloud computing has become a leading model in modern IT infrastructure,
offering scalable and on-demand resource provisioning for diverse appli-

cations across various domains. Cloud data centers, with their high energy
demands, are significant contributor to global energy consumption. As data
centers continue to expand, maintaining efficient resource management, energy-
aware scheduling, and cost-efficient solutions become more important [2].

Virtualization is central to this issue, abstracting hardware resources into multi-
ple virtual machines (VMs). This leads to better resource sharing and enhances
the flexibility of cloud infrastructures. However, improper VM placement
and resource allocation can result in reduced utilization and excessive power
demands [3]. As cloud providers strive to optimize costs and Quality of Service
(QoS) through Service Level Agreements (SLAs), such inefficiencies drive up
operational costs and carbon emissions, emphasizing the need for energy-aware
resource management strategies [4].

VM consolidation offers a viable solution for cutting energy waste and maxi-
mizing cloud resource usage. It optimizes VM placement by continuously real-
locating them to a smaller set of physical machines (PMs) based on real-time
workload demands [5]. Aggressive VM consolidation can degrade performance
and escalate SLA violations caused by bottlenecks and resource contention,
underminig some of the energy-saving benefits. Another difficulty is forecasting
workloads, as fluctuating demand makes optimal VM placement decisions more
challenging [6].

Given the complexity and expense associated with testing new resource manage-
ment techniques in live cloud environments, researchers rely on cloud simulators
to test and verify their algorithms. Simulators offer a controlled, repeatable, and
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cost-efficient way to model cloud infrastructures, test scheduling strategies, sim-
ulate different workloads, and analyze different energy models without requiring
expensive physical infrastructure [7]. Although these simulators are powerful
for cloud research, their realism is often limited. For example, modeled energy
usage and resource allocation may not fully align with real-world scenarios.
Such discrepancies may lead to inaccurate research results, where algorithms
that appear effective in simulation fail to deliver expected improvements in
real-cloud infrastructure.

For cloud simulators to be valuable, they must accurately replicate the dynam-
ics of real-cloud invironments. This requires detailed modeling of workload
behaviors, resource utilization trends, and energy consumption patterns offering
realistic power usage predictions that reflect actual hardware performance [8].
However, various cloud simulators adopt distinct assumptions and simplifica-
tions, leading to variations in modeling energy consumption and resource usage
simulations [9]. Without a standardized evaluation framework to assess realism,
researchers could face difficulty in determining which simulator yields the most
trustworthy results for their purposes.

The challenges presented above demand a systematic plan and a set of proce-
dures to effectively address them. Therefore, a detailed outline of the research
aims is needed to pinpoint the steps to overcome these problems.

1.1 Aims of The Research

1. To devise a framework for evaluating realism of cloud simulators, based on
how accurately they model real-world energy consumption and resource
utilization. Within this goal, we aim to support researchers to:

(a) Evaluate the realism of various cloud simulators in terms of their
real-world reflection, helping to select or enhance simulators for more
accurate representations of real-world environments.

(b) Outline disparities between simulated outputs and actual mea-
surements, aiding in refining simulations for greater real-world accuracy.

(c) Enhance the credibility of cloud simulation by aligning results
with reliable expectations.

2. To develop a new virtual machine placement algorithm that:
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(a) Improves energy efficiency by dynamically consolidating VMs to
a reduced set of PMs.

(b) Reduces resource wastage by efficiently allocating CPU and
memory to meet real workload demands.

(c) Meets SLA requirements, assuring high performance and quality
of service in spite of reduced PMs set.

1.2 Dissertation Guide

This dissertation is organized as follows:

Chapter 2 reviews fundamental concepts in cloud computing and explores key
technologies such as virtualization and VM consolidation strategies. Then, it
discusses the importance of simulation tools in cloud research, highlighting
their features and functionalities. Moreover, it examines energy models and
workload characteristics that influence cloud simulation realism. Additionally,
this chapter explores previous studies on cloud simulation realism and virtual
machine consolidation algorithms to enhance resource management and energy
efficiency, outlining the deficiencies that this dissertation aims to address.

Chapter 3 introduces our standardized framework for evaluating the realism
in cloud simulation. The chapter defines a unified methodology to compare
simulation outputs with real-world data under identical conditions. In addition,
it includes a standardized workload profile with five utilization levels, and high-
lights the data collection process required to generate simulation outputs. Then,
it describes the experimental setup, and explores discrepancies in simulation
results.

Chapter 4 introduces VMP-ER, a VM placement algorithm to enhance resource
utilization while optimizing energy consumption and SLA violations. It presents
our algorithm design, experimental evaluation using real-world workload traces,
and comparative analysis with existing strategies.

Chapter 5 highlights the significance of our proposed realism scoring framework
and VM placement algorithm. It provides a summary of the key contributions
in this dissertation and outlines potential future research directions.
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Background and Literature

2.1 Introduction

Cloud computing has significantly changed how computational resources can
be accessed and utilized, offering scalable resources on demand, flexibility, and
cost-effectiveness [10]. It has emerged as a fundamental element of today’s
digital transformation, fostering innovation in fields such as healthcare, finance,
and entertainment [11]. As companies continue to transition to cloud-based
solutions, the challenges of resource management, performance optimization,
and minimizing environmental effects becomes increasingly complicated [12].

The dynamic nature of the cloud has inspired investigations into robust cloud
management solutions, realistic modeling environments, and performance opti-
mization strategies [13]. To address these challenges, researchers and profession-
als leverage the concept of virtualization and the virtual machine consolidation
(VMC), trying to fill up VMs on as a few physical hosts as possible to reduce
energy consumption in cloud computing, leading to better resource utilization
of the cloud datacenter [14].

They often utilize cloud simulation environments, energy-saving algorithms,
and workload analytics techniques [15, 16]. Simulators offer a cost-effective
and safe platform to evaluate algorithms and strategies, while optimization
techniques for energy and resources focus on minimizing operational costs and
environmental effects [17].

This chapter gives an overview of cloud computing terminology and its popular
models and techniques that are necessary to achieve the aims of our research.
In section 2.2, we start with an overview of cloud computing models and
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simulation frameworks. Then, we explore cloud simulators techniques to model
energy and resources in cloud environments. This section also presents Virtual
Machine Consolidation (VMC) strategies and highlights the most widely used
techniques and methods to enhance energy efficiency. Finally, a thorough
analysis of related studies reveals the strengths and limitations of current
research is presented in section 2.3.

2.2 Background

2.2.1 Cloud Computing

Cloud computing represents a framework that delivers flexible and scalable
access to computing resources [18]. These resources, including computing
power, data storage, and networking, are offered on a pay-per-use basis. This
enables organizations to bypass the initial costs and challenges of owning and
managing physical infrastructure [19]. According to the National Institute of
Standards and Technology (NIST)i, three widely recognized service models are
identified:

1. Infrastructure as a Service (IaaS): Provides fundamental compu-
tation, storage, and networking services as resources offered on an on-
demand basis by a service provider [20]. Users manage their own operating
systems and applications, approaching the infrastructure as if it were
virtualized hardware [21]. Prominent IaaS providers include Amazon
EC2, Google Compute Engine, and Microsoft Azure [22].

2. Platform as a Service (PaaS): Features a higher-level development
environment or platform that simplifies the management of the underlying
infrastructure [23]. Developers can concentrate on deploying applications
instead of configuring individual servers [24]. Azure App Service and
Google App Engine are good examples.

3. Software as a Service (SaaS): Offers standard software applications
through a subscription or pay-per-use model, commonly available via a
web browser, without the need to install or manage software on local
devices [25].

ihttps://www.nist.gov/

https://www.nist.gov/
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As cloud infrastructures continue to expand and grow, effective resource man-
agement and accurate simulation modeling are becoming key challenges. Virtual
machine placement (VMP) is essential for distributing workloads across physical
machines while ensuring energy-efficient cloud operations [26]. In addition, the
accuracy of cloud simulators in replicating real-world behaviors is important,
as they meant to represent energy consumption and resource utilization of real
cloud environments.

2.2.2 Virtual Machine Consolidation (VMC)

Virtualization is a key technology in cloud computing, which enables hardware
utilization efficiency and multiple VMs to be hosted in a single PM by leveraging
a virtual machine monitor (VMM), or a hypervisor [27–29]. Virtualization
can be done on hardware level by running several operating systems (OS) on
a physical host, or on OS level allowing applications to be executed within
segregated environments while sharing the same kernel [30]. Virtualization
can also occur at the container level by using technologies like Docker and
Kubernetes [31]. This provides efficient and isolated environments without the
overhead of full VMs [32].

Virtualization minimizes reliance on physical hardware and enhances resource
efficiency, making it a key enabler of cloud computing [33]. Periodically, incom-
ing requests are evaluated and transformed into virtual machines, thereafter
receiving allocation of cloud infrastructure resources. Within the cloud environ-
ment, a diverse pool of PM resources with varying capacities exists. An effective
VM management is essential to minimize resource wastage and reduce energy
inefficiencies, leading to the concept of VM consolidation (VMC) [14, 34].

VMC is a key strategy in cloud computing, enhancing energy efficiency and
resource utilization [35]. It focuses on decreasing the number of operational
physical machines in a data center by dyanamically reallocating VMs from
underutilized PMs to others. Thus, energy consumption and operational
expenses can be significantly reduced by putting idle PMs into low power
states [36, 37].

The VM consolidation process typically includes three primary steps: (a) Host
Detection, finding PMs that are either underloaded or overloaded, (b) VM Se-
lection, choosing VMs to be migrated according to requirements like improving
resource usages or energy effect, and (c) VM Placement, finding a suitable
target to host VMs, ensuring minimal waste of resources while optimizing



8 Background and Literature

Figure 2.1: Virtual machine consolidation in a cloud data center

energy [38, 39]. Figure 2.1 shows virtual machine consolidation process, where
several VMs are consolidated into fewer PMs to increase performance. While
in-active PMs are switched off to save energy.

VMC Objectives: VMC strategies are essential for optimizing cloud data
centers’ performance and efficiency. These strategies focus on achieving energy
efficiency, resource utilization, while adhering to Service Level Agreements
(SLAs) through different methods, described below:

1. Energy-optimized: This approach focuses on reducing energy consumption
by grouping VMs on a fewer servers while shutting down inactive ones.
Server power consumption is estimated using energy models, facilitating
informed consolidation decisions [36].

2. Resource-optimized: This strategy aims to enhance resource utilization
by effectively packing VMs onto available servers. to prevent excessive
load on consolidated servers, factors like CPU load, network bandwidth,
and memory utilization are taken into account [40].

3. SLA-aware consolidation: This approach ensures that VM consolidation
adheres to Service Level Agreement (SLA) requirements. VM performance
is observed during and after consolidation to satisfy agreed performance
standards [41].

For efficient cloud management, designing a VM consolidation algorithm that
effectively balances these objectives is crucial for efficient cloud management.



Background 9

An optimal strategy should minimize power consumption and enhance resource
efficiency, while upholding to SLA-defined performance standards.

Common VMC Approaches: Several approaches and algorithms have been
designed to enhance the efficiency of VM consolidation:

1. Heuristic Approaches: Rely on predefined rules to guide the selection and
placement of VMs. While computationally efficient, they don’t guarantee
best possible results [42]. Common approaches include First Fit (FF)
which allocates a VM to the first suitable server, Best Fit which assigns
a VM to the server with the least remaining capacity, and Next Fit
which assigns a VM to the next server in order, enhancing server packing
efficiency [43].

2. Metaheuristic Approaches: Offer more complex solutions for VM consoli-
dation. They utilize iterative exploration of the solution space to identify
near-optimal VM placement setup [44]. While robust, Metaheuristic de-
mands substantial computational resources and require careful adjustment
of parameters. Genetic algorithms (GA), particle swarm optimization
(PSO), and ant colony optimization (ACO) are common approaches [45].

3. Workload prediction Approaches: These methods can identify trends
in resource usage and estimate future demands, empowering predictive
resource consolidation [8]. Although promising, these methods require ex-
tensive historical data for training to perform effectively in heterogeneous
workload scenarios and they are prone to biases in the data training
process. Common approaches are machine learning (ML) and neural
networks(NN) [6, 46].

4. Bin-packing Paradigm: Influenced by the principles of the bin-packing
problem, Some traditional VMC methods model PMs as bins with con-
straints like CPU limit and memory capacity, and VMs as items requiring
specific resources [34]. Algorithms such as First-Fit Decreasing (FFD)
and Best-Fit Decreasing (BFD) are recognized for their simplicity and
computational efficiency [42].

These algorithms serve as a baseline for designing sophisticated or special-
ized strategies [47]. Power-Aware Best Fit Decreasing(PABFD) extending
BFD heuristic by adopting power consumption metrics, and Modified
Best-Fit Decreasing(MBFD) prioritizing energy efficiency and SLA ad-
herence, are good examples [48]. By prioritizing VMs with the largest
resource demands first, these approaches optimize resource distribution
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and minimize the number of active servers. Thus, improving overall
energy efficiency [49].

Virtual machine placement (VMP) is a critical factor in optimizing resource
utilization and managing energy consumption within the cloud framework [49].
Nonetheless, due to factors such as request diversity, disparities in PM capa-
bilities, resource multidimensionality, and scale, devising an efficient solution
is inherently complex [50]. This mapping endeavor necessitates a design that
meets the core data center requirements including the reduction of energy
consumption and costs while increasing profit [51].

The issue concerning the placement of virtual machines (VMs) and the optimal
selection of destinations for migrations can be framed as a multi-objective
bin-packing challenge [52]. Here, the objective is to assign items (VMs) to
bins (servers) while keeping the number of bins to a minimum. Each VM is
characterized by its size, ensuring it fits within the designated container size
without exceeding it [35].

2.2.3 Modeling Real-world Behaviors

Since large scale cloud experiments with hundreds or thousands of servers in
the cloud can be costly and risky, researchers often utilize simulation tools to
replicate the behaviors of actual cloud [53]. Cloud simulators provide means
for modeling complex resource management strategies, testing algorithms, and
forecasting system performance without the financial implications or risks
of real-world deployment [54]. They also facilitate reproducible experiments,
which is crucial for analyzing and comparing algorithms within the research
community [55].

Cloud simulators vary in features and functionalities. Some address certain
features of cloud computing like energy efficiency or workload scheduling. While
others are designed to offer great flexibility and personalization, facilitating
a wide variety of research subjects [56]. A more comprehensive simulation
tool should allow for a more detailed model that better reflects the dynamic
nature of data center operations [57]. Additionally, the representation of energy
consumption from different states of PMs and VMs is crucial for accurate energy
modeling. Missing this can lead to inaccuracies in the simulation results [58].

Furthermore, some cloud simulators provide mechanisms for analyzing and
modeling of energy consumption at different levels. (e.g., per server, per
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application, per transaction) [59]. In addition, accurate and realistic modeling
depends on detailed data about the hardware environment, energy consumption
patterns under variable workloads, and environmental factors like temperature
control [2], this entails several key aspects:

(A) Resource Management: Simulation of how resources are scaled dy-
namically in response to workload changes, energy implications of scaling
operations, and automatic allocation and deallocation of resources in re-
sponse to changing workloads. Also, a detailed representation of CPU,
memory, storage, and network resources, including their energy consump-
tion profiles must exist [60].

(B) Workload Simulation: Emulation of actual workloads is essential for
cloud simulators in order to take important decisions regarding resource
allocation and decision making. This include user interactions and request
patterns, and modeling the impact of workload variability and peak usage
periods on energy consumption [17].

(C) Energy Specific Aspects: Energy consumption realism measures the
simulator’s ability to accurately estimate energy usage based on work-
load demands and resource utilization. This is crucial for sustainable
cloud management, allowing users to model energy costs and carbon
footprints [61].

(D) Cost modeling: Accurate representation of costs based on resource
usage, including pay-as-you-go and subscription models, in addition to
energy consumption. Simulating different scenarios to find cost-effective
configurations to reflect real-world billing [62].

One challenge with existing simulators is their varying levels of accuracy. Their
internal models may not fully capture real-world power consumption patterns,
workload fluctuations, and hardware diversity. To address this, a systematic
comparison of simulators, evaluating their internal behaviors under identical
configurations and workloads, can ensure that the selected simulator provides
a credible basis for evaluating cloud operations.

2.2.4 Cloud Simulators

Various cloud simulators are employed for research and industrial developments.
Let’s discuss a few of these to illustrate their advantages.
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CloudSim: Presented by Calheiros et al. [63], CloudSim is one of the leading
simulators in cloud computing research. It offers a flexible and adaptable
framework for modeling data centers, physical and virtual machines, resource
provisioning, and workload scheduling [17]. CloudSim supports various features,
such as energy-optimized, resource provisioning methods, and VM migration
which are essential for cloud resource optimizations. There are several other
simulation tools that are built on CloudSim, either extended to model network
behaviors [64], enhance scalability [65], model scientific workflows [66], or to
further analyze the performance of cloud-based applications [67, 68].

While CloudSim offers valuable features for energy consumption calculation
and state modeling of data center components, it still has some limitations
regarding its I/O processing model [69], communication models [70], and the
inaccuracy of power calculation [1]. Researchers, inspired by these critiques,
have actively contributed to the development of more sophisticated tools that
address the limitations identified in CloudSim [9].

DISSECT-CF: "DIScrete event baSed Energy Consumption simulaTor for
Clouds and Federations" [71] stands as a powerful simulation framework pro-
viding the ability to model energy consumption realistically. The simulator
integrates energy consumption models that consider the underlying infrastruc-
ture, including servers, I/O bandwidth, and storage components [1]. It provides
fine-grained energy modeling, allowing researchers to gain insights into the
energy usage patterns of cloud environments.

DISSECT-CF produces highly accurate simulation results in terms of finishing
time and energy consumption [72]. The reported error of just around 1% in
most cases indicates a high level of precision in capturing the behavior of cloud
systems [73]. Nonetheless, DISSECT-CF relies on a general network model,
limiting the ability to define specific network devices (e.g., routers, switches)
and simulate varied network architectures.

GreenCloud: Offers a balanced relationship between computing power and
server energy, employing three different power-saving modes [15]. It enables
detailed modeling of the energy consumed by individual data center components,
such as servers, links, and switches. Moreover, it provides an in-depth analysis
of workload distributions [2].

GreenCloud [74] is a packet-level simulator, built on the top of NS-2 ii. Its
architecture follows a three-tier data center model: access, aggregation, and
core layer. It utilizes two power-saving modes, Dynamic Voltage and Frequency

iihttps://www.isi.edu/websites/nsnam/ns/

https://www.isi.edu/websites/nsnam/ns/
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Scaling (DVFS) and Dynamic Power Management (DPM), influencing the car-
bon efficiency of clouds. Long simulation times and high memory requirements
are primary limitations in GreenCloud [15].

GroudSim: GroudSim [75] offers a discrete event simulation framework for
simulating scientific applications in cloud and grid computing environments. It
provides both real and simulated execution of real-world programs, leveraging
its integration as a back-end within the ASKALON environment [76].

Groudsim supports both CPU and network resources for cloud and grid systems,
task submission capabilities, file transfers, failure handling, and background
load management [77]. An abstract GroudEntity class that allows the simulator
is offered to adjust and monitor the status of user-defined entities. Compared
to other simulators like CloudSim or DISSECT-CF, it experiences performance
degradation when applied to large-scale applications, and it only offers basic
configuration on the network side, making it difficult to configure a realistic
network behavior [78].

SCORE: Simulator for Cloud Optimization of Resources and Energy Con-
sumption [79] is a simulator designed with a specific focus on optimizing the
utilization of resources and minimizing energy consumption. While SCORE
aims to provide a realistic simulation of data centers by offering simulation of
energy-efficient monolithic and parallel scheduling models and for the execu-
tion of heterogeneous, realistic, and synthetic workloads, it doesn’t provide a
detailed networking models [80].

Additionally, SCORE doesn’t support VM migration policies which is important
for modeling real life scenarios in cloud systems [81]. In real-world data centers,
networking and VM migration play a crucial role in overall performance, and
detailed simulation of network-related aspects is limited in SCORE [82].

To conclude, cloud simulators exhibit some considerable limitations. Some
either use abstract models that do not adequately reflect the complexities of
real-world systems, or suffer to model large-scale environments that include
thousands of nodes [17]. Moreover, challanges such as the availability of real-
world data, simplified energy models, and modeling real network behavior
restrict efforts to attain high realism [83].
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2.2.5 Realism in Cloud Simulation

Realistic cloud simulation is essential in cloud computing research, reflecting the
characteristics of real-world systems. It is useful for assessing resource allocation
methods, virtual machine placement approaches, and energy efficiency solutions,
without relying on large-scale physical infrastructure [84].

Realistic cloud simulations are important for a variety of reasons: (a) realistic
cloud simulations enable accurate evaluation of system performance under
varying scenarios, (b) accurate energy modeling is vital for evaluating and
implementing approaches to lower the energy footprint of cloud data centers,
and (c) they offer valuable insights into resource allocation and scheduling
policies, resulting in better cloud resource optimization.

Nevertheless, the realism of cloud simulators is influenced by multiple fac-
tors [85]:

• Workload Modeling: using realistic workload traces ensures that the
simulation captures real-life VM requests, job durations, and resource
usage patterns.

• Energy Consumption Modeling: the precision of simulated energy con-
sumption rely strongly on the selection of energy model.

• Resource Utilization Modeling: realistic simulations require precise repre-
sentation of CPU, memory, disk, and network usage.

• VM Consolidation Realism: proper modeling of VM placement and
migration strategies influences the simulator’s accuracy in predicting
system behavior.

Despite the significance of realism, there is currently no established standard
for direct comparison of cloud simulators. Existing studies either verify specific
simulator outputs by comparing them with real-world hardware measurements,
or develop sophisticated energy models to represent the dynamic nature of
cloud environments [17, 78].

While they remain valuable, these strategies lack a standardized methodology,
making it difficult to draw holistic conclusions about realism of simulators.
To address the limitations of current evaluation techniques, a realism scoring
framework is needed to systematically benchmark cloud simulators, adopting
standardized scenarios, configurations, and workloads. By applying uniform
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conditions across simulators, it is possible to achieve an unbiased comparison
against real-world energy and CPU data.

2.2.6 Workload Modeling

Workloads represent the system’s computational tasks and the resources they
consume over time [86]. They are very useful in performance benchmarking,
testing scalability, and energy optimization [87]. Workload modeling is an
essential component of research in cloud computing, impacting resource man-
agement, energy optimization, and the overall efficiency of the system [16].
Effective cloud management strategies, such as VM allocation and migration,
depends on accurate workload modeling [88].

Cloud workloads can be classified according to different characteristics [89].
For instance, they can be static with consistent resource requirements, or
dynamic workloads having fluctuating demands. Furthermore, they can be
classified based on their resource consumption characteristics into CPU-bound,
I/O-bound, and network-bound [90].

Poor workload modeling can affect the accuracy of simulations, which might
mislead the evaluation of optimization strategies [91]. Researchers leverage
real-world workload traces (e.g. Google Cluster [92], Microsoft Azure [93], and
PlanetLab), offering valuable information about real user behavior and system
performance, to make simulations more realistic [94].

2.3 Related Works

The demand for cloud services keeps growing, which means more energy is
used and higher emissions of CO2 are generated [95]. Amazon estimates that
up to 42% of a data center’s operating expenses are due to the energy it uses.
This increased energy usage is a big problem for cloud providers because it
makes owning and running data centers more expensive [49]. As we saw in 2.2,
server virtualization stands as a pivotal technology within cloud computing
systems, permitting the deployment and operation of several virtual machines
on a single physical server [96].

In this section, we first explore research works regarding energy efficient VM
consolidation strategies. We review recent methodologies, algorithms, and
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frameworks proposed in the literature to optimize energy consumption, perfor-
mance, and resource utilization. Then, we delve deeper into cloud simulation
tools, highlighting the existing limitations and shortcomings of available cloud
simulators. Our goal is to achieve both enhanced simulation accuracy and
realistic emulation of cloud computing environments.

2.3.1 Current VMC Algorithms

Many existing VMC heuristics have focused on the exchange between energy
consumption and performance of the system [97–99]. However, reducing energy
usage may come at the expense of performance degradation and increased
SLA violations due to frequent live migrations. Another challenge is the
consequence of incessant VM consolidation on system reliability [40]. This can
result in increased system failure probabilities by overburdening certain servers.
Therefore, an effective VM consolidation method must consider more than just
the ideal energy consumption, such as compliance with resource optimization,
SLA, and quality of service requirements [14].

Azizi et al. [49] presented an energy-efficient heuristic algorithm named minPR
for optimizing VM placement in cloud data centers. Their approach focuses on
minimizing energy consumption while ensuring optimal resource utilization and
performance. By introducing the resource wastage factor model, the authors
manage VM placement on PMs using reward and penalty mechanisms. The
proposed algorithm outperformed other previously discussed heuristics like
MBFD and RVMP [100] considering the total number of PMs and total resource
waste. However, simulation results showed that the algorithm performance
varies depending on the VM specification and the type of workloads.

The proposed approach by Beloglazov et al. [48] splits the VM consolidation
problem into hosts overloaded/underload detection, the selection of VMs to be
migrated, and VMs allocation. Their algorithm includes sorting the VMs in
decreasing order based on CPU utilization and allocating each VM to the host
that results in the least increase in power consumption due to the allocation.
However, the proposed approach focused on improving energy efficiency without
optimizing resource wastage.

The integration of their algorithm and the Planetlab experiment[101] within
CloudSim have collectively established a standard benchmark in the field. This
integration has catalyzed a trend where researchers, proposing novel algorithms
for the Virtual Machine (VM) consolidation problem, frequently adopt their
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algorithm as a baseline for comparison, showcasing enhancements through the
lens of the Planetlab experiment [102].

A dynamic VM consolidation approach was introduced by Sayad-
navard et al. [40] using a Discrete Time Markov Chain (DTMC) model and the
e-MOABC algorithm, aiming to balance energy consumption, resource wastage,
and system reliability in cloud data centers. The algorithm favors VMs with
higher impact on the CPU utilization of the server in order to minimize VM
migrations. Devising a resource usage factor technique to utilize PM resources
efficiently, Gupta et al. [103] proposed a new VM placement algorithm to
minimize the power consumption of the data center by decreasing number of
total active PMs. While these approaches showed substantial improvements in
energy efficiency, SLA violation need to be considered during the evaluations.

Ghetas [104] proposed the MBO-VM method to reduce energy consumption and
minimize resource wastage by maximizing the packaging efficiency. Utilizing
a multi-objective Monarch Butterfly Algorithm, the approach considers the
CPU and memory dimensions for VM placement optimization. Khan [105]
proposed a normalization-based VM consolidation (NVMC) strategy that aims
to place VMs while minimizing energy usage and SLA violations by reducing
the number of VM live migrations. Despite considering multiple resources of
PMs, reliance on CPU-centric calculations and VM sorting poses limitations in
heterogeneous environments with varying workloads.

A Load-Balanced Multi-Dimensional Bin-Packing heuristic (LBMBP) to
optimize resource allocation in cloud data centers was introduced by
Nehra et al. [106]. Nevertheless, the exclusion of resource availability be-
yond CPU in the power model limits its reliability. Moreover, Mahmood-
abadi et al. [107] focused on the bin packing with linear usage cost (BPLUC).
They examined the VM placement problem with three dimensions, CPU, RAM,
and bandwidth, aiming at reducing the power consumption. They compared
their result with PABFD [48], GRVMP [108], and AFED-EF [109]. The
approach demonstrates efficiency compared to existing methods.

Following bin-packing heuristics, Sunil et al. [110] proposed energy-efficient
VM placement algorithms, EEVMP and MEEVMP, considering server energy
efficiency. The researchers aims to optimize energy consumption, QoS, and
resource utilization while minimizing SLA violations. However, evaluations of
the varied workloads and infrastructures while considering additional resources
are necessary to ascertain the adaptability of these algorithms.

An enhanced levy-based particle swarm optimization algorithm with vari-
able sized bin packing (PSOLBP) is proposed by Fatima et al. [111] for
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solving the problem combining levy flight and PSO algorithms. An EVMC
method for energy-aware virtual machines consolidation was proposed by
Zolfaghari et al. [58], integrating machine learning and meta-heuristic tech-
niques to optimize the energy consumption. While considering all resources,
including CPU, RAM, storage, and bandwidth, the future load of the servers
isn’t considered when placing VMs.

Tarafdar et al. [112] proposed an energy-efficient and QoS-aware approach using
Markov chain-based prediction and linear weighted sum. The simulation results
showed a substantial reduction in the energy consumption, number of VM mi-
grations and SLA violations compared with other VM consolidation approaches.
A two-phase energy-aware load-balancing algorithm (EALBPSO) using PSO
for VM migration in DVFS-enabled cloud data centers was presented by Ma-
soudi et al. [113]. While demonstrating improvements in power consumption
and migration, SLA violation isn’t considered during the evaluations.

Many researchers have focused on cloud service selection as well as task as-
signments and their effect on resource utilization and energy consumption by
effectively scheduling user tasks. Nagarajan et al. [114] intorduced a comprehen-
sive survey discussing the advantages and limitations of research investigating
the cloud service brokerage concept. They also outlined various open research
challenges and provided recommendations. Finally, they introduced an intel-
ligent cloud broker for the effective selection and delivery of cloud services
aiming at utilizing cloud resources.

An energy-optimized embedded load-balancing approach that prioritizes the
tasks regarding their execution deadline was proposed by Javadpour et al. [116].
It also categorized the physical machines considering their configuration sta-
tus. The algorithm prioritizes tasks based on execution deadlines and server
configuration, utilizing DVFS to reduce energy consumption. A multi-resource
alignment algorithm for VM placement and resource management in cloud
environment was analyzed by Gabhane et al. [117]. Several algorithms were
compared based on CPU and memory utilization as well as the probability
of task failure. Multi-resource alignment demonstrated better performance in
CPU and memory utilization compared to other algorithms.

Lima et al. [121] introduced a VMP algorithm for optimizing the service
allocation process. In their evaluation, they considered two scenarios based on
task arrival. The first scenario assumes no prior knowledge of task execution
time, and the second scenario assumes all tasks arrive simultaneously. The
results indicated a significant improvement in the average task waiting time. A
two-phase multi-objective VM placement and consolidation approach employing
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the DVFS technique was proposed by Nikzad et al. [118]. Using a multi-objective
ant colony algorithm, the approach aims to improve energy consumption and
SLA violations.

An efficient VM consolidation approach EQ-VMC was introduced by
Li et al. [119], which has the goal of optimizing energy efficiency and ser-
vice quality integrating discrete differential evolution and heuristic algorithms.
By considering host overload detection and VM selection, EQ-VMC aims to
reduce energy consumption and enhance QoS. Simulation results demonstrated
improvements in energy consumption and host overloading risk as well as
improved QoS. A Best Fit Decreasing algorithm for VMP formulated as a
bin-packing problem was proposed by Tlili et al. [120]. The simulation re-
sults demonstrated higher packing efficiency compared to other algorithms.
Nevertheless, they did not take SLA violation into account.

While numerous energy-aware algorithms focus primarily on reducing energy
consumption within data centers, none have simultaneously considered PMs’
heterogeneity and multidimensional resources, minimizing the energy consump-
tion, balancing the resource wastage, and improving SLA altogether. Our
proposed algorithm in chapter 4 adopts a more comprehensive approach. In
addition to enhancing energy usage, we consider power efficiency, SLA violation,
and resource wastage (both CPU and memory) on host servers collectively dur-
ing VM allocation and placement. Table 2.1 gives a summary of the resources
and evaluation metrics used in the literature.

2.3.2 Simulation Accuracy and Realism

Realistic simulation of these data centers is crucial for understanding their
performance, optimizing resource utilization, and addressing environmental
concerns such as energy consumption [122]. Simulating energy consumption
accurately requires a comprehensive energy model that encompasses various
aspects, including servers and networking equipment [57]. For instance, model-
ing the dynamic power consumption of servers based on their utilization levels
and accounting for the static power draw is crucial for capturing the nuances
of energy usage in a data center.

Moreover, considering the impact of workload variations on energy consumption
is necessary for a realistic simulation [61]. A robust energy model should
integrate workload-aware power models, reflecting the fluctuating demands on
the data center resources. This enables the simulation to mirror real-world
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scenarios where energy consumption varies based on the nature and intensity
of workloads [123]. To enhance accuracy, researchers often leverage trace-based
simulations, where the simulation parameters and workload characteristics
are derived from real-world traces. Additionally, continuous refinement of
simulation models based on empirical data helps in minimizing the gap between
simulation and real world [78].

A number of research works have focused on reproducing works using different
simulators aiming to examine the effect of them on operational process. Mann [1]
described their experience in porting a VM placement algorithm from one cloud
simulator to another, proposing a layer of abstraction for implementing the VM
allocation policy using Planetlab workloads. Similarly, Bahwaireth et al. [124]
compared several simulation tools by applying different scenarios but failed to
establish identical setups among the simulators, which is crucial for accurate
and fair comparative analysis. Most existing research lacks a consistent cloud
infrastructure across simulators, thereby limiting the validity of the findings.

Bambrick et al. [78] presented a comparative analysis of widely-used simula-
tors, focusing on their supported models, architectures, and high-level features.
However, they overlooked the internal behavior of cloud entities across different
simulators, which can significantly influence outcomes. Mansouri et al. [17]
provided a detailed survey of existing cloud simulators, discussing their fea-
tures and software architectures but did not explore how varying simulator
behaviors impact algorithm implementation. Likewise, Di et al.[92] attempted
to reproduce a Google cloud environment using real experimental settings
and large-scale production traces [125]. While they successfully demonstrated
the simulation system’s capability to reproduce real checkpointing and restart
events, they did not compare their results against other simulators, thus missing
an opportunity to validate their findings across platforms.

Many researchers have sought to enhance the realism of cloud simulations by
incorporating energy consumption models, resource utilization metrics, and
realistic workload patterns. Alshammari et al.[126] emphasized the necessity for
robust validation methods in cloud simulations, as many existing tools struggle
to predict energy consumption and resource utilization accurately. While the
study provides valuable insights on improvements needed in simulators to better
reflect real-world conditions, its reliance on a Raspberry Pi-based testbed may
limit the generalizability to more complex data center infrastructures.

Ilager et al. [128] presented a data-driven analysis of private cloud’s physical
machine-level resource utilization, energy consumption, and thermal behavior
over nine months. Their study, based on data from 144 servers, revealed
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non-linear relationships between utilization and energy/thermal metrics. While
the absence of VM-level data restricts deeper analysis of application-specific
impacts, the work provides a valuable foundation for further research and
optimization strategies.

Several cloud simulation surveys have been done, but only few tried to address
energy driven aspects. Some categorize simulation tools based on attributes,
availability, and features provided [78, 131, 132]. Others focused on system
architecture aspects and modeling support of simulators while choosing suitable
tools based on their specific requirements [7, 9, 129]. Makaratzis et al.[127]
conducted an in-depth study of cloud simulation frameworks, highlighting the
significance of accurate energy models for evaluating potential energy usage.
They compared multiple simulation tools to examine their strategies for energy
prediction.

The study by Makaratzis et al. [127] underlined that linear interpolation model
is considered as highly precise because of their proficiency in approximating
intermediate utilization points. However, the absence of real-world data for all
levels of utilization, hindering the ability to reach firm conclusions concerning
the accuracy of these models.

While existing approaches classify simulators based on their features, archi-
tectures, or specific applications, a significant gap remains in evaluating their
realism, especially in terms of energy efficiency and resource allocation. These
approaches often overlook how accurately these simulators replicate real-world
behavior, which limits their reliability for research requiring precise cloud
environment modeling. Table 2.2 presents a comparison of existing research
based on the realism metrics they incorporate.

2.4 Summary

This chapter provided an in-depth exploration of the fundamental ideas and
studies relevant to cloud computing, virtualization, virtual machine consolida-
tion, and cloud simulation. An introduction to cloud computing initiated the
discussion, highlighting its essential features and service layers. The discussion
then shifted to virtualization, a cornerstone of cloud computing, emphasizing its
ability to abstract resources, handle workload, and optimize cloud operations.
Next, the chapter delved into an examination of VM consolidation approaches
used to optimize resource utilization and energy consumption in cloud data
centers.
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The exploration continued with an overview of cloud simulation, analyzing var-
ious simulators such as CloudSim, DISSECT-CF, GreenCloud, and GroudSim.
These tools play a vital role for cost-effective and scalable evaluation of cloud
resource management strategies. The discussion focused on the strengths and
weaknesses of these simulators, particularly in terms of their support for energy
consumption analysis and workload representations, as these factors directly
impact the reliability of simulation-based research. Studies focusing on the
comparative analysis of cloud simulators and their accuracy in mimicking
real-world behaviors were analyzed.

Finally, the chapter emphasized the importance of a unified evaluation frame-
work to assess the realism of cloud simulators. This discussion lays the ground-
work for Chapter 3, where a novel realism scoring framework for cloud simulators
is introduced, based on their ability to accurately model energy consumption
and resource utilization. Chapter 4 further expands on this discussion by intro-
ducing an energy-efficient virtual machine placement algorithm that optimize
energy efficiency and resource utilization while maintaining SLA adherence.



3
Realism in Cloud Simulation:

Definitions and Scoring
Framework

3.1 Introduction

Cloud simulators play an important role in evaluating cloud systems perfor-
mance. They minimize costs and risks associated with experimenting in live
environments [17, 55]. Nevertheless, the usefulness of cloud simulators depends
on their ability to replicate real-world behaviors accurately [78]. This replication
is crucial for tasks such as virtual machine migration, resource scheduling [38],
and energy consumption minimization, in cloud data centers [136].

Realistic simulation in the context of a cloud environment is expected to be a
comprehensive and accurate emulation of real-world systems, applications, and
workloads within a cloud infrastructure [84]. This simulation must replicate the
behavior, performance, constraints, and dynamics of the actual environments
to provide credible insights and outcomes. This includes:

• reliable predictions about system behavior and performance under various
conditions.

• opportunities for optimizing resource usage to reduce energy consumption.

• and sustainable cloud practices by simulating and recommending energy-
efficient configurations and operations [137].
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Achieving realism in cloud simulation is a complex task because of the diver-
sity of cloud workloads, variance of resource demands, and complex energy
behaviors [138]. However, realism’s standardized assessment allows for im-
provement of simulators, which is beneficial for both research and industry
applications [17]. In this chapter, we explore the concept of realism in cloud
simulation, with particular focus on energy consumption accuracy and resource
utilization. We propose a systematic framework for defining, measuring, and
scoring realism across different simulators.

In addition, we evaluate the framework’s applicability and highlight its potential
to improve the quality and consistency of cloud simulation research through
a detailed case study and experiments. We define measurable metrics for
energy consumption, resource utilization, and performance evaluation, exploring
CloudSim and DISSECT-CF as two widely used cloud simulators. Through
rigorous experimentation and comparison with real-world data, we demonstrate
how our realism score can bring valuable insights into the strengths and
limitations of simulators, guiding researchers and practitioners in selecting the
most suitable tool for their needs.

This chapter continues with the following: Section 3.2 defines realism in cloud
simulators, setting up a unified metric system to benchmarck simulation tools.
Section 3.3 presents the workload profile to represent realistic workloads, en-
compases different utilization levels to reflect real-world cloud data center tasks.
Section 3.4 describes the process of collecting data from real and simulated
environment. Section 3.5 presents the metrics used to calculate realism score for
cloud simulators. In Section 3.6, we demonstrate the required prerequisites for
having identical setup among simulators, ensuring fair comparison. Section 3.7
covers experiments and simulations to examine realism. Section 3.8 concludes
the chapter, and highlight the outcomes.

3.2 Designing Unified Metric System

Realistic simulation environments provide opportunities for users to make a
decisive assesments about performance, power efficiency, and budget control.
These assesments can be readily translated into real-world operations. Cloud
simulators diverge in the way they present realism, some offer resource schedul-
ing mechanisms, others target power consumption measurements, and some
provide distinct services like memory utilization and network communications.
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Each acts in different way considering the internal configuration and design
aims.

Nevertheless, the majority of cloud simulators target resource utilization and
energy consumption measurements as these metrics are important in cloud
data centers. To determine the degree to which a cloud simulator accurately
reflects real-world behavior, a unified realism score mechanism is essential as
it determines how close a simulator can model real-life environments. This
should provide a standardized score so that cloud simulators can be compared
based on accuracy they provide. Such comparisons would foster usability and
effectiveness of the simulator in research and applications.

Additionally, setting up a unified metric helps in benchmarking simulation
tools. This is helpful when identifying the effectiveness of imitating real-world
experiments, providing guidance to users prioritizing their simulation tool
selection, and also for developers to improve their tools by identifying the
strenghes and weaknesses and setting a room for improvements. The first
step towards unified realism score is to define what realism means in cloud
computing simulation.

Realism Definition: Realism is "the proportion to which the environment
and behavior of simulators conform to real-world cloud system operations". It
should encompass aspects such as workload characteristics, resource utilization,
task scheduling, energy consumption, and network dynamics. Realism ensures
that findings derived from simulations are transferable to real-world systems
expanding their practical value.

Our proposed realism score framework aims to:

1. Offer a standardized approach to evaluate and compare the realism of
different cloud simulators.

2. Assess the alignment between simulated and real-world data using com-
parable metrics.

3. Inspire simulator developers to aim at realistic modeling by iterative
adjustments.

Finding one cloud simulator that can model all aspects and behaviors of real
clouds is challenging task. Our primary focus is on resource utilization and
energy consumption metrics in cloud simulation, as these factors play a crucial
role in the virtual machine consolidation decision-making process, a critical
part of energy optimization. Therefore, we can split realism in cloud simulation
into two main key components:
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• Resource Utilization: The degree to which the simulated computa-
tional resources align with real-world under a predefined setting with
varying workload characteristics.

• Energy Consumption: The level of accuracy that a simulator demon-
strates in terms of power usage patterns in cloud environments compared
to actual power draw, considering various states such as idle, stress, and
dynamic workloads.

3.3 Workload Profiles

Workload profiles are comprehensive representations of the resource utilization
and operational patterns of applications in cloud platforms across time. It
sheds light on how system resources are utilized as time progresses, guiding
decisions with respect to resource distribution, performance analysis, and
system architecture. They are essential for reproducing and examining results
across different simulation tools [139]. By capturing resource usage patterns and
user demands across time, workload profiles serve as benchmarks for assessing
the effectiveness and realism of simulation models.

Workload profiles feature several primary components and properties. For
instance, resource utilization trends indicate the range of system resources (e.g.,
CPU, memory, and bandwidth) during run time. Execution patterns represent
another important property, which include the time of workload execution along
with the count of tasks executed. These patterns strongly affect performance
of systems and are often used to capture a variety of operational features
and scenarios. Additionally, behavioral patterns illustrate the variations in
workloads depending on load changes. Combined, these attributes give a
holistic view of workload dynamics, enabling clear representation of real-world
cloud environments [16, 128].

In the absence of realistic workload profiles, simulation results can be mis-
leading or overly optimistic. Thus, leading to incorrect assessments in cloud
management performance analyses. Based on discussion above, a five-level
utilization framework is introduced as a standardized workload profiling. This
framework captures primary functional states in cloud data centers, transition-
ing from minimal to peak resource utilization. Each level demonstrates unique
characteristics and real world examples observed in cloud environments:
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• Idle Uitilization: Minimal resource utilization (0-2%), often matched to
off-peak hours where the system is in a low-power state or standby mode.
this level of utilization could last for three hours a day in average [16].
The main reason behind including this level is to model baseline energy
usage, which is crucial for power efficiency analysis.

• Low Utilization: Periods of low demands in which workloads are light
(up to 30% utilization). This level is the most common in data centers,
typically reflecting applications requiring minimal resources, few test
scripts, or small web services. It highlights system behavior for lightweight
operations and it may continue for up to 15 hours per day [88, 128].

• Medium Utilization: Moderate periods (30-60%) to reflect regular
and steady operations. This level of utilization reflects scenarios like
running a moderate data analytics or business operations and it might
be observed for 3 hours everyday [89].

• High Utilization: Periods of high demand where CPU is heavily used
(60-90% utilization). These could represent peak times during the day
when more users are active. High utilization explores periods of heavy
transactional workloads and it may take around 2 hours per day [128].

• Maximum Unitilization: In real data centers, some PMs might expe-
rience extreme load conditions or a full-utilization (90-100%) state, such
as running computationally intensive simulations or modeling tasks. This
level of utilization may endure an average of one hour per day [16].

The main reason behind introducing five levels of utilization is to provides a
balanced representation of diverse operational states while ensuring simplicity
and reproducibility. A lower number of levels fail to represent critical transitions,
such as the gradual increase from idle to low utilization. On the other hand,
increasing the number of levels can add unnecessary complexity and limit the
practical applicability of the model, as smaller variations may have negligible
effects on the energy efficiency and system performance.

To record the highest attainable samples for dynamic and varying utilization
per level, the average utilization of each phase is expected to be approximate to
(min + max) / 2, where min and max represent the minimum and maximum
percentages of a given utilization level. For instance, when measuring the
medium utilization level (between 30% and 60%) over one hour, the average
utilization for that hour should be approximately 45%.

To illustrate, this approach ensures variance in utilization levels between the
minimum and maximum (30% and 60%) and promotes unbiased behavior in
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Figure 3.1: Utilization cycle test for a period of 24 hours

simulators, thereby achieving a balanced number of increases and decreases in
utilization during that period. It also reflect dynamic nature of cloud workload
in which resources allocation are changing dynamically based on the kind of
running applications.

Real-World Context: Consider the comparison with vehicle emissions testing,
such as the Worldwide Harmonized Light Vehicle Test Procedure (WLTP). Just
as WLTP incorporates multiple measures to analyze vehicle performance under
a range of conditions, this framework integrates statistical and correlation
analysis to offer a thorough evaluation of simulator realism.

The five-level framework integrates the advantages of real workloads (offering
authentic trends and recording subtle variations and irregularities) and synthetic
workloads (convenient to generate and replicate, offering ability to control
specific features) by enabling a systematic yet versatile model to ensure a blend
of realism and reliable reproduction. To capture the dynamic nature of cloud
workloads, several common patterns, that servers in a normal cloud system
might experience during a day, are introduced in Figure 3.1.

The figure also illustrates direct and gradual transitions among various utiliza-
tion levels to reflect different types of applications where resource demands
differs with the amount of resources they utilize. The first part of the figure
shows direct transitions from idle state to all other states while confirming that
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reference energy usage is modeled accurately. This highlights the increase in
resource utilization when launching various types of applications.It also helps in
identifying each utilization level seperately while giving a better understanding
on simulator behaviors for each given phase. For instance, capturing transitions
from idle to low is critical since idle power consumption is non-zero, and power
models in simulation tools must precisely reflect this baseline utilization level.

Additionally, transitions from idle to high levels are common in fault-tolerant
systems, idle nodes might be kept on standby mode, stepping in for a failed
active node and taking over its full operational load. Later, the figure illustrates
a gradual increase from idle to stress phases, passing through all intermediate
levels of utilization. This progression reflects the rise in user requests during
working hours, offering insights into system scalability, and can also represent
the calibration process of cloud resources.

The final part of the figure represents periods with minimal user interactions
and low demands, featuring occasional spikes that could correspond to backup
operations or other maintenance tasks performed during non operational periods.
The transitions among different levels of utilizations were chosen to benchmark
simulation tools and also to facilitate reproducibility.

3.4 Data Collection

In real-life cloud computing environments, dynamic energy consumption is
calculated based on actual power measurements from hardware components,
typically using power meters or built-in sensors.

The process of collecting data from real-world environments is crucial, as this
data are needed to evaluate the accuracy of simulation tools. By comparing the
results from both real and simulated environments, it is possible to determine
the level of accuracy for simulators in terms of measurement precision. There
are numerous tools commonly used to record data from servers in cloud data
centers, including metrics such as CPU, memory, network usage, and their
respective energy consumption. Each component exhibits a different power-to-
utilization ratio, depending on its internal design and the type of applications
it executes.
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3.4.1 Real-world Data Collection

Gathering real-world data is a key step in ensuring authentic realism score for
cloud simulators. Accurate measurements on resource utilization and energy
consumption establish a reference in which simulated outcomes can be evaluated.
There is a wide range of tools for monitoring resource utilization and energy
consumption, each providing multiple functionalities and levels of accuracy.
For instance, external power meters can measure the actual power drawn by
individual servers or entire racks, Intelligent Power Distribution Units (PDUs)i

can measure and report power consumption for the connected equipment.

Many modern servers have built-in sensors that monitor power consumption
and report metrics like voltage, current, and temperature. In addition, software
tools like Intel’s RAPL (Running Average Power Limit) and AMD’s PowerNow
provide APIs to read power consumption metrics directly from the CPU.ii
Amazon has AWS CloudWatch to monitor services for its resources, providing
insights into several metrics, such as CPU utilization and memory usage. There
is also a variety of tools for recording data, such as Azure Monitor, Nagios, and
Zabbix, which provide CPU utilization and other performance metrics. iii

Users are expected to adhere to specific measurement guidelines when gathering
real data. Initially, workload traces should be obtained from cloud environ-
ments running a range of applications with varying resource demands, aligning
with the utilization levels specified in section 3.3. CPU utilization must be
measured at fine intervals to accurately capture dynamic workload fluctuations.
Moreover, hardware and software configurations should be recorded to main-
tain consistency and to avoid potential biases due to infrastructure differences.
Data collected on CPU utilization is used as input to simulators, and resulting
simulation measurements should align with corresponding real measurements
with specified time intervals.

In summary, despite the complexity and cost associated with hardware tools,
they provide more accurate measurements and real-time data recording com-
pared to software tools, while software monitoring tools offer cost-effective
measurements with acceptable precision. In fields like computer science and
cloud computing research, it’s common to extract specific parts of large datasets
to focus on particular utilization levels or to study specific behavioral patterns.

ihttps://www.hpe.com/psnow/doc/c04123329
iihttps://powerapi.org/reference/formulas/rapl/

iiihttps://www.zabbix.com/integrations/azure

https://www.hpe.com/psnow/doc/c04123329
https://powerapi.org/reference/formulas/rapl/
https://www.zabbix.com/integrations/azure
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This is usually done by specifying the required utilization levels and applying
data acquisition technique for extraction while ensuring data continuity by
selecting consecutive intervals.

3.4.2 Simulated Data Collection

Simulation tools involve different models for resource utilization and power
consumption to represent practical scenarios. This enables users to gain
valuable insights in handling their infrastructure and pinpoint the elements
or the applications that mostly affect system behavior. Additionally, such
tools guide cloud providers and researchers on strategies to save energy and
enhance efficiency, thereby fostering the adoption of energy-efficient solutions
that optimize total system performance.

To maintain uniformity and comparability across simulators, it is important
to adopt a standardized procedure for collecting results. This includes using
identical power model and utilization levels (or workload behaviors) across
simulations. By doing so, we can eliminate variability caused by differing setups
and focus on evaluating the core behavior of each simulator. Several power
models are used to capture the characteristics of hardware environments. For
instance, resource utilization can be effectively modeled linearly with power
consumption [140]. The simplicity of this model makes it a suitable choice for
benchmarking and allows for straightforward integration across simulators.

The first step is to configure simulators to replicate the real-world hardware
setup as closely as possible. This may include parameters such as CPU, memory,
network bandwidth, disk, operating system, and room temperature. It is
important to note that not all simulators can simulate all of these parameters.
In such cases, the metrics used should be clearly defined to ensure transparency
and enable fair comparisons among simulators.

Data gathered from the real world infrastructure, following our utilization
cycle from figure 3.1, is input into the simulation framework to compare the
accuracy of resource allocation between the real and simulated environments.
The data collected from real-world sources will be directly compared to their
simulated equivalents. Ultimately, the realism score will be based on the error
rate between real and simulated outputs.

By this stage, the expectation is to have a comprehensive table of data from
both real-world and simulated measurements, aligned based on timestamps,
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Table 3.1: A sample of real data gathering for simulation

Time interval Ureali Preali Usimui Psimui

t1 Ureal1 Preal1 Usimu1 Psimu1

t2 Ureal2 Preal2 Usimu2 Psimu2

t3 Ureal3 Preal3 Usimu3 Psimu3

... ... ... ... ...

... ... ... ... ...
tn Urealn Prealn Usimun Psimun

and including both CPU and power consumption measurements. This step
ensures comparability across the datasets. Table 3.1 shows a data sample for
score calculation, where {t1,t2,...,tn} define time intervals during which data
collection took place. Ureali and Usimui represent real-world and simulated
utilization measurements, while Preali

and Psimui
reflect the power readings

from both real-world and simulation environments. Now that the data has
been collected, we can proceed to calculate our proposed realism score.

3.5 The Realism Score Calculation

Our realism score offers a structured method for assessing the precision of cloud
simulators in reproducing real-world data patterns. The score indicates the
divergence between simulated and real-world measurements adopting multiple
statistical measures, promoting a rigorous and consistent evaluation approach.
This section describes the framework and supporting equations leading to the
final realism score, targeting both the errors magnitude and the alignment of
trends within real and simulated data sets.

Additionally, the framework fosters improvements in cloud simulators, partic-
ularly in energy modeling and resource usage precision. The primary goal is
to evaluate simulation accuracy through various aspects, accounting for error
magnitude, energy consumption alignment for workload profiles, and unified
realism score incorporating all these factors. One of the steps envoloved in error
calculation is evaluating the absolute difference between two measurements for
each data point. This is useful as absolute error (AE) gives an indication of
the discrepancy in each measurement.
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Let RMeasure and SMeasure be the real and simulated measurements for each
data point. The absolute error can be calculated as follow:

AE = |RMeasure − SMeasure|

This step allows both overestimates and underestimates to have an effect on
the error metric without cancelling each others. To calculate the mean absolute
differences across all data points, Mean Absolute Error (MAE) provides a
measure of the overall deviation of simulated measurements from the real-world
data where lower MAE indicates better alignment between real and simulated
data:

MAE = 1
n

n∑
i=1

|RMeasurei − SMeasurei |

where n represent the number of data points used for comparison. To make error
values comparable across diverse workloads with varying scales of utilization,
Mean Absolute Percentage Error (MAPE) is used to provide a direct measure
of how much the simulated measurements deviate from the real-world mea-
surements in percentage terms, making it a widely used metric for simulation
accuracy.

MAPE = 1
n

n∑
i=0

|RMeasurei
− SMeasurei

|
RMeasurei

× 100% (3.1)

Since the lower value of MAPE indicate better precision, and we want higher
realism score to demonstrate better simulation, we subtract from 100. The
realism score (RScore) can be calculated as:

RScore = Wp × (100 − MAPEp) + Wu × (100 − MAPEu) (3.2)

where Wp and Wu are the weights for power and utilization and they can be
adjusted according to the focus of the evaluation, MAPEp and MAPEu are
the mean absolute percentage error for power and utilization respectively.

In our framework, we set Wp to 0.8 and Wu to 0.2 as power consumption preci-
sion holds greater importance in our evaluation. In addition, the choice of our
weights is mainly attributed to varying scale and variability of CPU utilization
to power consumption. CPU utilization is expressed as a percentage from 0% to
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100%, while power consumption is measured in watts and depends on hardware
specifications. It is worth mentioning that RScore in equation 3.2 is centered
on CPU utilization measurements with their related energy consumption. To
consider others resources such as memory and bandwidth, additional weights
for each H/W component might be encorporated.

Illustrative example: Assume MAPEp is 30%, and MAPEu is 10%. RScore
can be calculated as follows:

RScore = 0.8 × (100 − 30) + 0.2 × (100 − 10) = 74.

A Realism Score of 74 show that the simulator achieves relatively good perfor-
mance (the closer to 100 the better).

3.6 Establishing Comparable Simulation Setup

Before applying the realism scoring framework, a preliminary investigation
has to be conducted to set up equivalent configurations between, the two to
be compared, cloud simulation tools. In this section, we use CloudSim and
Dissect-CF as examples. This is necessary to establish a relevant comparison
of their realism, as simulators differ significantly in their structural designs and
core functionalities. Directly comparing results obtained with default settings
would be misleading because of the inherent differences in modeling practices
of simulators.

The realism score depends on the precise reproduction of PMs and VMs on
both simulators with the same specifications (e.g., CPU cores, processing speed,
and power model). In our case, we choose to implement a PM with same
specification as the HP ProLiant DL560 Gen9 with Intel Xeon E5-4650 v4,
64 GB RAM, and 1 GB bandwidth. For the workload data, we implement
new mechanism in DISSECT-CF simulator so that it can load the same
Planetlab [141] workload structure in CloudSim. For a good quality realism
score, the compared simulators must have the same amount of energy consumed
for their respective PMs.
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3.6.1 Trace Loading Mechanism

In cloud simulation, workload loaders are important for the interpretation
and execution of input workloads within the simulated environment. These
loaders handle tasks allocation, resource usage emulation, and trace parsing. To
ensure consistency in experiment setups, identical workload loaders has to be
implemented. This also helps in eliminating discrepancies due to fluctuations
in job scheduling, resource provisioning, and submission time, ensuring that
any observed differences in simulation outcomes are caused by the internal
models of simulators.

One of the advantages of CloudSim that attracts many researchers is that it
has a builtin workload traces(Planetlab workload). It contains information
from 10 days about CPU usage from around 1000 VMs, these information
can be found in examples/workload/planetlab folder in CloudSim. The CPU
load data are stored as simple text files in which each file contains 288 values
reflecting the CPU utilization of one VM for a day. Thus, each value in a file
represents a CPU utilization taken every 5 minutes.

Beloglazov et al. [48] have made some arrangements so they could evaluate
their algorithm with realistic data for testing. They have implemented Utiliza-
tionModelPlanetLabInMemory class for the cloudlet utilization model which
reads the utilization values from a file. For their experimentation setup, they
have made the PlanetLabRunner class with some helper classes (PlanetLab-
Helper and PlanetLabConstants) to provide parameters for simulation. These
parameters include the name of the folder corresponding to a specific date of
the Planetlab data in which the folder consists of many files contain the CPU
values for a VM. Finally, they have created helper class to set up PMs and
VMs based on the data in the constants class.

In order to use the Planetlab data in the DISSECT-CF simulator, we intro-
duced a new trace loading mechanism [139]. This mechanism aims to generate
jobs based on Planetlab workload trace, enabling these jobs to utilize the VMs
throughout simulation process. We created two new classes, PlanetLabFolder-
Reader class in which it is responsible for choosing the experiment date, then
PlanetLabFileReader is created to open the files inside the folder and create
a job for each line in the files. This class implements the CreateJobFromLine
method in the DISSECT-CF simulator. Table 3.2 shows a brief description of
trace loading mechanism. Jobs created in DISSECT-CF have:
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Table 3.2: Trace loading mechanism in DISSECT-CF

1: Open Planetlab directory.
2: Choose specific day for loading data.
3: For each file inside the folder:
4: While the file has line:
5: Construct a job from line.
6: Setup the submission time and the executable value.
7: Add the job to List of jobs.

• Start time: we configure each job with different starting time with a 300
seconds interval between any two succissive jobs so that each job can run
on the same VM once the previous job finishes.

• Job type: the PlanetLabFileReader class will insure that all the 288 jobs
to be created have the same executable value so that they could all run
on a specific VM later (DISSECT-CF have VMSetPerKind map in which
it bond a VM type to certain type of jobs)

3.6.2 Physical Machine Setup

Even when executing identical workloads, resource utilization and power con-
sumption can be affected due to factors like CPU design, energy efficiency,
and other hardware specification of the PM. For example, a server featuring
advanced power-saving mechanism may exhibit lower energy than an outdated
server. This would distort the interpretation of realism when compared to
simulated results. Hence, ensuring identical hardware configurations, power
measurement strategies, and workload execution settings enhance realism
assessments.

Many differences have been observed during the implementation of PMs on
both simulators. In order to implement a PM in CloudSim (called Host) while
getting results regarding energy and utilization, we used CloudSim power
package. We first created a data center (PowerDataCenter class) object in
which we could add PM (PowerHostUtilizationHistory) to it. For host creation,
we needed to specify the ID, RAM, network bandwidth, storage, number of
CPUs, and power model. We also built a new power model to reflect the
energy consumption of the server according to the CPU utilization percentage.
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This is done by extending (PowerModelSpecPower) class and implementing its
(getPowerData) function.

For DISSECT-CF, creating PM (PhysicalMachine) was more complicated than
CloudSim because DISSECT-CF tries to imitate real life cloud infrastructure
in more detail. We needed to create a repository object representing the disk,
connect it to network, and defining a power model for the power characteristics
descriptions. Also, DISSECT-CF defines three consumption models (CPU,
memory, and network) inside the power model of a PM, so we modify the
consumption model to have the CPU amount of energy separately.

In addition to HP ProLiant DL560 Gen9, we incorporated two additional power
models for HP ProLiant ML110 G4 and HP ProLiant ML110 G5 server types
within DISSECT-CF. These models are designed to reflect identical energy
consumption compared to CloudSim. Furthermore, we implemented power
transition generators to capture energy consumption by considering multiple
states of both PMs and VMs.

Concerning the initial allocation of VMs to PMs, a VM allocation policy
was implemented to mirror the behavior of CloudSim. This policy takes
into account more realistic measurements, including memory and bandwidth
utilization of the PMs, in addition to the current CPU utilization. For the
sake of a straightforward comparison between the two simulators, we focused
solely on the initial VM allocations without involving any VM migrations. The
primary objective was to assess differences in energy consumption rather than
delve into the decision-making processes related to VM migration by the VM
scheduler.

It is worth mentioning that DISSECT-CF doesn’t allow querying energy directly
from the PM. Unlike CloudSim, which allows direct queries for current power
consumption of hosts, each PM may be associated with an energy meter object
that consistently monitors its usage. DISSECT-CF aligns more closely with real
data centers, where energy consumption is typically collected using monitoring
tools and sensors.

3.6.3 Virtual Machine Setup

The configurations of virtual machines must be identical across simulators to
ensure fair comparisons in the realism scoring framework. Resource alloca-
tion, performance, and energy consumption, are directly influenced by VM
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characteristics. Thus, discrepancies in VM configurations can introduce biases
that are affecting realism evaluations. Parameters like virtual CPU (vCPU),
memory size and type, bandwidth limit, scheduling policies, and VM placement
strategies, should be uniform.

VMs in CloudSim have the following specifications: ID, Million Instructions Per
Second (MIPS), image size, bandwidth, number of cores, and task scheduler.
CloudSim has separate classes for VM and the task to be run. To launch a
task in the VM, one can create two separate objects for the VM (Vm) and
for the task (Cloudlet) and then it is the responsibility for Broker to submit
task to VM. VMs in DISSECT-CF can be created by invoking requestVM
method in the PhysicalMachine object. requestVM requires a VirtualAppliance
object representing the functional virtual machine images in the system, as
well as a resource constraints representing the amount of resources the VM
uses compared to the hosting PM.

To launch a task in DISSECT-CF, we invoked the newComputeTask method
and specified the task length, processing limit, and ConsumptionEventHandler.
Once task is assigned to VM, it’s not possible for the VM to change its
utilization. To have a VM with varying levels, we made sure that the task
finishes in specific period of time so we can launch another task with different
utilization.

In order to have the same behavior for the VM in DISSECT-CF, we have created
a VM and control the total number of instructions to be executed considering
the processing capability (for instance, a task with 5 million instructions would
take 5 seconds to finish if it runs on a VM with 1 million instruction/ second
power) so that VM can run for specific period of time with identical utilization
percentage as if it was running in CloudSim simulator.

3.7 Experiments

To examine the realism of CloudSim and DISSECT-CF simulators, an ex-
perimental system is designed for enabling clear evaluation under consistent
settings. During the simulation, we turned off any simulator specific features
(e.g., VM migration, energy saving mechanism) except if they are applied in
both simulators. This is useful to ensure that differences observed are stemmed
from core simulator logic and not from different configurations.
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3.7.1 Data Acquisition and Simulation Setup

A fixed input structure was developed to make sure both simulators obtain the
same dataset. A 24-hour time span specifying time intervals, CPU utilization
values, and real measurements of energy consumption was specified. these
measurements were collected using raw data from several sources, all precisely
matched to the server hardware described earlier. a five-minute average mea-
surement intervals were taken(i.e., 288 data points per simulator) to provide a
side-by-side comparison of the simulators.

The data is extracted from multiple reputable sources while ensuring alignments
with Intel Xeon E5-2650 processor. Idle, low, and some of medium utilization
data with their respective energy readings were extracted from the dataset
in [142], trimmed to timeframes where CPU usage stayed within idle (0-2%)
and low (3-30%) thresholds. Mid(30-60%), high(60-90%), and stress(90-100%)
utilization data were obtained from published real-world measurements running
several kind of applications (e.g., Agisoft Metashapeiv, Blenderv, and MATLAB)
on an Intel Xeon processors.

We implemented a structured data extraction process to align the real-world
dataset samples with our workload profile. First, we applied a running average
across the entire dataset to obtain a representative baseline of utilization levels.
Next, we identified intervals in the dataset where utilization levels match those
in our workload profiles, to reflect real-world behavior. Following the selection
of appropriate windows, we performed a normal average calculations for the
extracted samples to ensure that the final 288 data points, to be loaded into
simulation, preserve the original utilization trends for each segment in the real
dataset.

After selecting the required samples, we combined them to produce a composite
workload, preserving the natural variations and trends of real-world work-
loads. Both simulators were instructed to generate CPU utilization and power
consumption values to a csv file every five minutes while ensuring identical
timestamps between real and simulated measurements for fare comparison.

ivhttps://www.agisoft.com/
vhttps://www.blender.org/

https://www.agisoft.com/
https://www.blender.org/
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3.7.2 Realism Score Calculation

Once the real and simulated datasets were aligned, we measured the absolute
error between each real data point and its matching simulation output by
using Excel formulas. We then calculated the MAPE to determine the overall
deviation for both CPU utilization and energy consumption values using
equation 3.1. We continued with our realism score calculation, including both
CPU and energy measurements, as discussed in section 3.5.

Our final realism score for CloudSim and DISSECT-CF simulators is presented
in table 3.3. From the table, we can see that DISSECT-CF better matches
actual energy data. It yields 19.89% error for MAPEp compared to CloudSim
which has 21.56%. Possible interpretation that the default mechanism of
DISSECT-CF’s internal power modeling analyze real consumption patterns a
bit more precisely than CloudSim’s one, more likely in responding to transitions
betweeen idle and all other active states, power measurement for the first five
minutes, or even in handling spikes of energy measurements.

While CloudSim shows slightly more accurate representation of CPU utilization
percentage error(MAPEu) of 0.05% compared to DISSECT-CF (1.34%), both
reflect delicate variations in CPU and energy precisions as their overall realism
scores adhere closely. Nevertheless, the error margin indicates that these tools,
although practical for academic studies, might need adjustments for a more
accurate energy or resource scheduling at scale. Figure 3.2 shows a complete
energy consumption aquired from running the same workload on PM in both
simulators for 24-hours period, compared to the real power readings.

Table 3.3: Realism score for DISSECT-CF and CloudSim simulators

Simulator MAPEp MAPEu RScore

DISSECT − CF 19.89 1.34 83.82
CloudSim 21.56 0.05 82.74
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Figure 3.2: Real vs. simulated power consumption

3.7.3 Insights from Complete Planetlab Experiment

To further explore simulation realism and to reinforce insights derived from
our evaluation, additional study using the complete real-world workload trace
of Planetlab experiment is conducted. Although the main analysis centered on
a single PM for comparability, our goal is to investigate the behavior of both
simulation tools in a broader and more authentic workload circumstances.

By applying the full Planetlab workload in DISSECT-CF, we aim to study
broader patterns and to detect any simulator-specific actions, such as task
scheduling, resource overloading, and energy consumption patterns, that further
boost precision and scalability. In addition, we provide our insights on some
ciritical behaviors found while implementing experiment.

Table 3.4 shows the parameters used for evaluating Planetlab experiment. VMs
are initially created with requested resources adhering to the nominal values
specified in the workload. In CloudSim, these values govern the initial allocation
of VMs to PMs. However, following the initial re-optimization phase, CPU
values undergo modification in alignment with the Planetlab trace, resulting
in considerably reduced CPU loads. Additionally, memory utilization values
for VMs are set to zero during this phase. This implies that, from the first
re-optimization onward, VMs occupy significantly fewer CPU and memory
resources compared to their initial placement.
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Table 3.4: Parameters of Planetlab experiment

PM Types #CPUs for
each PM

CPU (MIPS)
for PMs

RAM (MB)
for PMs

Power Model
for PMs

2 2, 2 1860, 2660 4000, 4000 HP ProLiant G4,G5

VM Types #CPUs for
each VM

CPU (MIPS)
for VMs

RAM (MB)
for VMs

4 1,1,1,1 2500, 2000, 1000, 500 870, 1740, 1740, 613

Figure 3.3 shows the power consumption characteristics of HP Proliant G5 and
G4 servers for different CPU load intervals. For the Planetlab experiment in
CloudSim, The curve of power efficiency for G5 servers demonstrates a more
favorable trend from 0% to 30%. Compared to the range between 30% and
60%, this may result in suboptimal decisions by the algorithm.

To illustrate, in a scenario where the algorithm must choose between the two
servers, one with CPU load of 20% and the other with 60% load, to host a VM
with CPU load corresponding to 10% of PMs’ capacity, the algorithm might
favor the PM with a CPU load of 20% due to its superior power efficiency.
However, this contradicts the VM consolidation concept, which advocates for
consolidating as much load as possible onto well-utilized PMs while attempting
to free up lightly loaded ones.

Figure 3.4 depicts a comparison of energy consumption between CloudSim and
DISSECT-CF utilizing an identical infrastructure setup, we run the simulation
using Planetlab workload for 10 days. The increased energy consumption
in DISSECT-CF is attributed to the consideration of additional factors that
impact energy measurements in real-life scenarios. This includes the potential
positive power draw of switched-off PMs, as well as the energy consumption
associated with switching PMs on and off, all of which CloudSim neglects.

In addition, the initial assessment of power demand in CloudSim occurs at the
start, when the VMs have zero CPU load, resulting in the assumption that
each PM’s power consumption is also zero at this point. Consequently, the
energy consumption of the data center during the first 5 minutes is inaccurately
recorded as 0. In contrast, DISSECT-CF accurately estimates energy consump-
tion from the beginning, leading to higher recorded energy values over the first
five minutes. It is noteworthy that to ensure a fair comparison between the
two simulators, we configured the VM allocation so that both have an identical
VM-to-PM allocation map.

Although we cannot definitively determine which simulator performs better
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in terms of realism due to the lack of real energy measurements for the entire
Planetlab experiment, observations from the single PM analysis in 3.7.2 provide
additional evidence suggesting that DISSECT-CF produces more realistic
energy measurements. Finally, DISSECT-CF exhibited significantly faster
simulation times compared to CloudSim. This is helpful for conducting very
large scale simulation experiments.

3.8 Summary

The prevalence and complexity of cloud computing systems emphasize the value
of simulation tools for designing, tuning, and evaluating system performance.
Considering the limitations in forecasting energy usage in large-scale systems,
it is vital for simulators to mitigate this complexity. In this chapter, we defined
realism in cloud simulation, with a particular focus on power measurements and
the reflection of resource utilization between real and simulated environments.

Next, we introduced a realism scoring framework for assessing cloud simulation
tools, emphasizing the value of matching simulated results to actual data
behaviors. We presented a five-level workload profile for evaluating simulation
tools, and encorporated a clear data collection procedure, to guide researchers
and developers in obtaining comparable data for score calculations. The profile
incorporates various characteristics of real-life workloads, while also allowing
the framework to be tailored to diverse workloads and evaluation needs.

A comparison between CloudSim and DISSECT-CF simulators was conducted
to evaluate their accuracy in replicating real-world data by assessing their
realism scores for CPU utilization and power measurement accuracy. Our
analysis showed that, while both emphasized their capability to model real-
world scenarios, DISSECT-CF offered a little better precision than CloudSim in
simulating power behavior, while CloudSim showed slightly improved accuracy
in resource utilization percentages. Furthermore, we discussed our endeavor
to port the Planetlab experiment and its evaluation setup from CloudSim to
DISSECT-CF aiming at achieving a more realistic simulation.

Having established that simulator selection can offer a dependable starting
point to develop more effective solutions, our next focus will be on designing
a VM placement algorithm focused on maximizing energy efficiency and re-
source utilization, while meeting SLA requirements. In cloud data centers,
where energy efficiency, resource allocation, and SLA requirements are vital, a
reliable simulation environment encourages both researchers and practitioners



Summary 47

to develop methods that optimize resource utilization and energy efficiency
within practical limitations.





4
An Energy Efficient and Resource

Optimized Virtual Machine
Placement Algorithm

4.1 Introduction

In large-scale cloud environments, with numerous high-performance computing
devices, energy inefficiency becomes a significant concern due to the under-
utilization of resources [136]. Virtualization addresses this issue by allowing
multiple instances of VMs to be hosted on a single physical server, thereby
reducing operational costs, power consumption, and resource wastage [41, 143].
To further improve resource utilization and energy efficiency, VMs are mi-
grated from underutilized servers allowing those servers to be transitioned to a
low-power state [144].

As discussed in chapter 2, VM consolidation allows for flexible redistribution of
resources across multiple hosts. Nevertheless, maintaining a balance between
performance and energy consumption minimization is still a challenge. A variety
of existing solutions prioritize consolidation strategies aiming at enhancing
power efficiency while ignoring resource utilization and SLA, leading to increased
latency and possible financial penalties for cloud service providers [145–147].
Other solutions overlook possible power inefficiencies and potential resource
wastage trying to achieve better SLA [148–150].

This research gap urges for more holistic approaches that tackle these challenges
by improving resource utilization and energy efficiency while adhering to SLA
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requirements.. In this chapter, we present VMP-ER, a novel VM placement
algorithm that optimizes (1) energy consumption, (2) resource wastage, and
(3) SLA violation within cloud data centers, in the context of a multi-objective
bin-packing problem. Unlike other placement algorithms that are focused on
the data center’s overall power and resources, we consider resource usage in
addition to power efficiency factors at the host level. The main idea is to
balance resources accross PMs, leading to overall improvements in the data
center resources.

In chapter 3, we highlighted that the selection of cloud simulators entails
finding a balance among realism, practical implications for accessibility and
simplicity, and comparability with current research. We employ CloudSim in
the upcoming step to facilitate direct comparisons with existing algorithms
that have already been implemented in CloudSim.

This chapter continues with the following: Section 4.2 presents our methodology
of implementing VMP-ER algorithm, introducing several models such as power
efficiency, resource wastage, and SLA. Section 4.3 demonstrates scenarios and
experiments designed to evaluate the performance of our algorithm compared
to others. Section 4.4 summarizes the results achieved by our algorithm.

4.2 Methods

Virtual Machine Placement (VMP) aims to minimize the number of physical
servers required to host VMs while generating migration maps for live migra-
tion. However, excessive migration of VMs during consolidation may degrade
application performance and response times. Additionally, efforts to minimize
energy consumption through VM consolidation may inadvertently violate the
SLA between service providers and customers.

Figure 4.1 gives an example of improved VM placement aiming at reducing the
power consumption and resource wastage. In this figure, 9 VMs are placed on
4 different PMs utilizing resources to some extent. It can be seen that the PMs’
resources are not utilized properly. One way to improve resource utilization
is by migrating VMs from server 1 to server 2 and from server 4 to server 3
so that server 2 and server 3 become more utilized and well balanced in term
of resource usages, while servers 1 and 4 are switched off to save energy. All
servers in the figure are assumed to be Lenovo ThinkSystem SD535 V3, where
power consumption at different utilization levels is stated in Table 4.1.
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Figure 4.1: Example of improved VM placement

The resource wastage factor represents the amount of allocated resources
that are left idle, which negatively impacts resource effectiveness in cloud
infrastructure. Poor VM placement, underutilized physical machines, and
unbalanced resource allocation can escalate resource wastage. Incorporating the
resource wastage factor into the energy-efficiency calculation aids in alleviating
potential VM migrations caused by resource shortages on hosting servers.
Additionally, it facilitates the efficient utilization of a PM’s resources and
fosters a balance among remaining resources across multiple dimensions.

When two VMs operate on the same server, the server’s CPU and memory
utilization are approximated by adding up the individual CPU and memory
utilizations of the VMs. For instance, if one VM requests 30% CPU and 40%
memory, and another VM requests 20% CPU and 20% memory, the combined
utilization of the server hosting both VMs would be estimated at 50% CPU
and 60% memory, respectively, reflecting the summation of the utilization
vectors. To prevent the server’s CPU and memory usage from reaching full
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Table 4.1: Power usage in watts of different servers at different utilization levels
Utilization (%) ThinkSystem SR850 V3 ThinkSystem SD535 V3

0 375 222
10 580 449
20 670 552
30 758 634
40 848 709
50 947 773
60 1058 842
70 1164 920
80 1436 999
90 1879 1199
100 1916 1321

capacity (100%), it becomes necessary to set an upper limit on the resource
utilization per server, which is denoted by a threshold value. This precautionary
measure is rooted in the understanding that operating at full capacity can lead
to significant performance deterioration and also because VM live migration
consumes some CPU processing resources on the migrating node.

We model the power consumption, SLA and resource wastage of a data center in
the following subsections. Following the earlier works of [49, 115], we exploit the
resource wastage factor to devise the resource usage at the PM level. Table 4.2
includes the list of notations used in this work for better readability.

4.2.1 Power Consumption Modeling

The power consumption of PMs is described as a scale of CPU utilization with
linear relation. So, a server’s power consumption is a function of its CPU
utilization, as shown below:

P(h) =
{
Pidle(h) + (Pmax(h) − Pidle(h)) × Ucpu(h), if Ucpu(h) > 0,

0, otherwise,
(4.1)

where Pidle(h) and Pmax(h) are the power usage of host h when it is within
an idle and 100% utilization state. Ucpu(h) denotes the normalized CPU
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Table 4.2: List of notations used in this chapter

Notation Description
H The set of servers or hosts

A(H) The set of active hosts, where A ⊂ H
V The set of VMs
Z The set of (VM,PM) pairs

M() Processing power in MIPS
hch The chosen server for hosting

Rq (v) Requested resources for VM v

Rf (h) Available/free resources of host h
Pe(h) Power efficiency of host h
Ee(h) Energy efficiency for host h
P(h) Current power consumption of host h

P′(h, v) Expected power consumption of host h after hosting VM v
S(h) The current SLA violation of a host h

S′(h, v) The expected SLA violation of host h after hosting VM v
Rw(h) Resource wastage factor of host h

Ucpu(h) Normalized CPU usage of host h
Uram(h) Normalized RAM usage of host h
Fcpu(h) Normalized free/remaining CPU of host h
Fram(h) Normalized free/remaining RAM of host h
Pmax(h) Maximum power for a host h when it is 100% utilized
Pidle(h) Power of host h when it is idle
Pdif(h, v) The increase in power consumption of host h after hosting VM v
Sdif(h, v) The difference between S′(h, v) and S(h)
F(h, v) Denotes Pdif(h, v) multiplied by Sdif(h, v)
Vh(t) SLA violation of host h at time t
AT (h) Total time in which host h is active

utilization. The overall power draw for the data center will be the summation
of all the PMs in the data center.

4.2.2 Power Efficiency Modeling

A high-performance server consuming excessive power may be outperformed by
a mid-range server delivering better computational power per watt. To improve
efficiency evaluation, we introduced a power efficiency metric to determine the
amount of computing power that servers provide per unit of their peak power
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consumption. Our algorithm leverages this metric to assign VMs to servers
that offer the highest performance while minimizing power wastage.

If we consider a physical machine h with a CPU capacity of mips(h) (expressed
in Million Instructions Per Second, or MIPS) and a maximum power consump-
tion of Pmax(h) (measured in watts) reflecting the overall power draw from all
the PM dimensions (CPU, RAM, network, and disk storage), we can define
the power efficiency of h as follows:

Pe(h) = mips(h)
Pmax(h) . (4.2)

Pe(h) is designed to assess PM efficiency based on its peak power consumption.
This approach ensures that VMs are assigned to PMs that deliver the highest
processing power per watt of energy consumed. For instance, the machine in
our running example from table 4.1, Lenovo ThinkSystem SD535 V3, boasts a
computational power of 288,000 MIPS and a maximum power consumption
of 1321 watts, yielding a power efficiency score of 218.02. Conversely, Lenovo
ThinkSystem SR850 V3 offers a computational power of 456,000 MIPS and
a maximum power consumption of 1916 watts, resulting in a power efficiency
score of 237.99. Consequently, Lenovo SR850 V3 demonstrates superior power
efficiency compared to ThinkSystem SD535.

4.2.3 Resource Wastage Modeling

When VMs are deployed on servers, some allocated resources may remain
unused, leading to resource wastage. The available remaining resources on
individual servers can significantly differ across various VM placement strategies.
To effectively harness multidimensional resources, the subsequent equation is
employed to quantify the potential expense incurred from the unused resources
of a single server:

Rw(h) = |Fcpu(h) − Fram(h)| + ε

Ucpu(h) + Uram(h) (4.3)

where Ucpu(h) and Uram(h) are the normalized used CPU and RAM, while
Fcpu(h) and Fram(h) indicate the normalized remaining CPU and RAM. The
idea of having ε is that resource wastage cannot be entirely eliminated even
when hosts are fully utilized, as there is always some degree of resource waste.
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Additionally, it helps to avoid zero values when both CPU and RAM have
identical normalized utilization rates. ε can be set to any small positive number
like 0.0001 for instance.

The equation identifies cases where resource utilization can be improved across
various dimensions and ensures a balanced distribution of remaining resources
on each server. This is achieved by prioritizing PMs that give the lowest average
resource waste in all considered dimensions when hosting certain VMs. We
exploit the Rw(h) factor to determine the normalized resource usage for each
PM where the one with more balanaced resources across all dimensions will
have a higher priority to host VMs.

4.2.4 SLA Modeling

Ensuring adherence to SLAs is vital in cloud computing, as it affects system re-
liability, user satisfaction, and potential financial penalties for service providers.
SLA violation indicates situations in which a host cannot fulfill a specific VM’s
request for a certain amount of resources at a given time. We expressed this
with the following equation:

S(h) =
∑T

t=0
Vh(t)

AT (h)
(4.4)

where T denotes the total time required to execute the input workload, and
Vh(t) represents the binary value for host h, which is 0 if no violation occurs at
that time and 1 otherwise. The value for AT (h) represents the overall time in
which host h was active. A violation occurs when the host experiences 100%
CPU utilization.

4.2.5 SLA Conscious Energy Efficiency Model

Improper VM placement and resource management can result in high power
consumption, underutilized resources, and frequent SLA violations, degrading
overall system performance. To tackle this, our approach determines the
feasibility of deploying a VM on a server by considering its influence on power
efficiency and potential SLA violation rates. Let Ee(h) represent our target
function that encompasses the energy consumption, resource wastage, and SLA
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violations of host h within a data center. As a first step toward our algorithm,
we define Pdif(h, v). This denotes a potential power draw improvement of a
host if it is also hosting VM v:

Pdif(h, v) = P′(h, v) − P(h). (4.5)

Similarly, we define Sdif(h, v) as the potential SLA violation change of a host
when it starts hosting a new VM v:

Sdif(h, v) = S′(h, v) − S(h). (4.6)

We next define the overall improvement of the host as follows:

F(h, v) =


Pdif(h, v), if Sdif(h, v) = 0,

Sdif(h, v), if Pdif(h, v) = 0,

Pdif(h, v) × Sdif(h, v), if both terms ̸= 0,

1, otherwise.

(4.7)

We are using only non-zero improvement components, so we can use this in
the denominator of our overall target function:

Ee(h) = Pe(h)(1 − Rw(h))
F(h, v) . (4.8)

4.2.6 The VMP-ER Algorithm

Now, we are ready to discuss Algorithm 1, which builds on the previously
discussed equations. In general, our algorithm, just like any typical VMP, takes
a list of PMs and a list of VMs as input, and then it produces a set of VM–PM
pairs as output, in which each VM is hosted by certain hosts as guided by our
target function.

First, the VMs are sorted in decreasing order according to CPU demands. For
each VM in the VM list, the algorithm checks the set of active servers that
have enough resources to accommodate the VM request and calculates the
energy efficiency for each one based on Equation (4.8). To calculate Ee for
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Algorithm 1: VMP-ER Placement Algorithm
Require :H and V
Ensure : Z : where Z is {(v1, h1), (v2, h2), (v3, h3), ...}

1 forall vi ∈ V such that M(vi) ≥ M(vi+1) do
2 if Rq(vi) ≤ Rf (hj) then
3 h

ch = arg max
hj ∈A(H) Ee(hj)

4 end
5 else
6 hch = arg max

hk /∈A(H) Ee(hk)
7 end
8 Z ∪ (vi , h

ch)
9 end

10 return Z

each host, the algorithm determines the variation of power consumption before
and after hosting VM v using Equation (4.5). Thus, the host with the lowest
increase in the power consumption will have a better chance at hosting.

The Pe factor helps in choosing the server with the highest power efficiency.
This means that the host with a higher Pe is preferred, since it can host more
VMs with a lower increase in power consumption compared to other PMs. This
leads to minimizing the overall power consumption of the DC by utilizing as
few hosts as possible. The potential SLA violation impact before and after VM
placement is calculated using equation 4.6.

The resource usage factor of the nominated servers is calculated by considering
two dimensions, CPU and RAM, based on Equation (4.3). This factor is
important for selecting an appropriate PM in terms of resource utilization
across multiple dimensions. Additionally, it aids in balancing the resource
wastage of PMs by giving priority to those with higher resource utilization.

The energy-efficiency metric for each server will be obtained based on the power
effiency, resource usage, and potential occurrence of SLA, which all contribute
to the selection of PMs. The most suitable one will be chosen to host the VM
while pairing between VM–PM is updated (line 3). If there is no active server
to accommodate the VM, the algorithm selects an appropriate host from the
set of inactive servers that has the most energy-efficienct metric (line 6). The
chosen host will be associated to the VM (line 8). Finally, when all the VMs
are allocated to their hosts, the algorithm returns the final set of VM–PM
pairings (line 10).
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Let there be n number of VMs in set V and m number of PMs in set H.
The algorithm takes O(n log n) to sort VMs in descending order based on
resource demands. For each VM, the algorithm checks all active PMs to find a
suitable host and then checks all inactive ones in case there is no active host
available. All calculations for Ee(h) take a constant amount of time (O(1))
and can be ignored. Thus, the overall time to sort VMs and to check all hosts
takes O(n log n + nm). As the number of PMs is smaller than the number of
VMs in the cloud system, we can express the complexity for the algorithm as
O(n log n + n2). As n increases, the overall complexity can be simplified to
O(n2).

The fundamental concept of including the Rw(h) factor in the choice of PM
is to enhance the utilization of a physical machine’s resources across various
dimensions while ensuring a balanced distribution of remaining resources. It
also helps with mitigating unnecessary potential migrations due to resource
contention, thus increasing the energy optimization for the whole data center.

Since Rw(h) represents the normalized resource wastage of the host, (1−Rw(h))
reflects the normalized resource usage, which we include in our calculation of
the energy-efficiency factor (Ee(h)). This means that the host that has an
acceptable amount of resource usage will be prioritized for hosting the VM and
thus lead to more utilized hosts while minimizing the number of powered-on
servers overall. This indicates a reduction in the total power consumption of
the data center caused by decreasing the number of active hosts.

To reduce the data center’s power consumption, overloaded and underloaded
machines are not considered for hosting. This exclusion occurs when a physical
machine’s remaining capacity surpasses a specific threshold, either exceeding an
upper threshold or falling below a lower one. Consequently, VMs on underloaded
PMs will be migrated to other hosts, enabling the shutdown of those machines
to save energy.

4.3 Experiments

A modern data center is characterized by its heterogeniety, comprising various
generations of PMs with differing configurations, particularly in processor speed
and capacity. These servers are typically integrated into the data center incre-
mentally, often replacing older legacy machines within the infrastructure [151].
Thus, we considered a heterogenous data center that contains two types of
servers from different generations, as shown in table 4.3.
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Table 4.3: Configuration of PMs

PM Type CPU (MIPS) RAM (GB) Bandwidth (Gbps)
SD535 V3 288,000 192 100
SR850 V3 456,000 512 100

Table 4.4: Configuration of VMs

VM Type CPU (MIPS) RAM (GB) Bandwidth (Gbps)
m5.large 3100 8 8
m5.xlarge 6200 16 8
m5.2xlarge 12,400 32 10
m5.4xlarge 24,800 64 12
m5.8xlarge 49,600 128 20

Five types of VMs are used, as shown in table 4.4. Also, we set all VMs to
have a single CPU core, and we assumed task independency in which there are
no communications required among the VMs during the task execution. To
assess the performance of VMP-ER, we utilized various metrics including the
number of active PMs, total power draw, and resource waste.

4.3.1 Representative Example

Let us first consider a scenario in which two types of Lenovo servers, SD535 and
SR850, are available within a data center for hosting VMs. For simplicity, let
us assume that the following resources are currently available in these servers:
one active SD535 server has 2604 MIPS and 2800 MB available, while one
active SR850 server has 3724 MIPS and 1600 MB available. Now, let v1, v2,
and v3 represent VMs awaiting placement within the data center. The resource
requirements for each VM are as follows: v1(1800 MIPS, 1100 MB), v2(1600
MIPS, 1000 MB), and v3(1100 MIPS, 520 MB).

Through the analysis of various algorithms, it has been observed that some
algorithms prefer SR850 servers, while others favor SD535 servers. For instance,
LBMBP [106] and EEVMP [110] algorithms would opt to place v1 on a SR850
server due to its higher power efficiency factor compared to SD535. Subse-
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quently, v2 would be placed on a SD535 server, since the available resources
on the SR850 server are insufficient. For v3, EEVMP would activate a new
physical machine to accommodate it, as neither SD535 nor SR850 has adequate
resources.

In contrast, our algorithm takes resource usage into account while identifying
the most energy-efficient PM among the active PMs. This involves calculating
the (1 − Rw(h)) term for both PMs using Equation (4.3), resulting in values of
0.942 for SD535 and 0.861 for SR850. Subsequently, the power efficiency factor
(Pe(h)) is computed using Equation (4.2), yielding values of 218.02 for SD535
and 237.99 for SR850.

The difference in power consumption before and after placing v1 is then de-
termined, resulting in a difference of 27.2 watts for SD535 and 28.8 watts for
SR850. Assuming no SLA violations occur, the E-efficiency factor (Ee(h)) for
both servers is calculated to be 7.55 for SD535 and 7.14 for SR850, leading to
the selection of SD535 to host v1. For v2 and v3, since only the SR850 server
possesses sufficient CPU and RAM resources, both VMs are hosted on the
SR850 server without the need to activate another physical machine.

Consequently, our proposed algorithm utilizes fewer PMs, leading to increased
energy savings for the data center. Additionally, resource wastage is minimized
as PM resources are utilized properly. While the LBMBP algorithm moves
VMs to different PMs during the migration phase, it tends to result in higher
energy consumption compared to the proposed algorithm. This is primarily
because more energy is consumed during migrations. In data centers with
diverse PMs and VM instances operating at scale, our algorithm is expected to
deliver better performance.

In addition, our proposed algorithm enhances the quality of service of running
PMs and minimizes the threat of PM overload by considering both the current
and future resource usage status. This approach ensures effective destination
PM selection. We consider both the load and dependability of PMs. Thus,
the election of safer and balanced PMs for hosting results in properly utilized
PMs and hence reduces the likelihood of potential migrations. This reduction
significantly improves the performance degradation due to the migration metric.
By enhancing the servers’ resource usages, the algorithm ensures that fewer
PMs will be able to host more VMs. This improvement becomes viable when
the number of VMs increase.

For large instances of VMs like Amazon EC2 M5.4xlarge (24,800 MIPS, 64,000
MB) and M5.8xlarge (49,600 MIPS, 128,000 MB), the LBMBP algorithm
initially places them on SR850 servers but later migrates them to SD535 servers
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to minimize resource wastage. This approach performs better with certain types
of workloads where VMs are not fully utilized most of the time (workloads do
not request 100% of their demands). However, the likelihood of SLA violations
will increase when these VMs operate at full utilization.

Considering the energy consumed by VM migration, our proposed algorithm
obtains better results than the LBMBP by achieving better resource balancing
and energy optimization on average. This is accomplished by avoiding frequent
VM migrations and incorporating the SLA metric into the PM selection process,
thereby improving QoS.

4.3.2 Evaluation

In our experiment, we used real data taken from the Planetlab workload
trace [101]. Cloudsim was used to perform the experiments. Figure 4.2
indicates the number of PMs required to host varying numbers of VMs. VMP-
ER outperforms EEVMP and LBMBP in terms of the total number of active
PMs due to its packing efficiency aiming at allocating more VMs to a single PM
while taking load balancing into account. In contrast, EEVMP and LBMBP
tend to place most VMs on SR850 servers first, as their decisions are based
mostly on power efficiency. As the number of VM requests increase, both
algorithms start to activate more PMs to accommodate these requests, as
previously discussed in this section.

EEVMP requires a higher number of PMs, as shown in the figure. This is
primarily because EEVMP focuses on the lowest increase in power consumption
when hosting particular VMs without considering resource wastage, often
leading to the selection of an idle PM for initial VM placement. It is noteworthy
that LBMBP involves two phases in VM placement: an initial placement phase
and a replacement phase, where VMs are migrated to different PMs. In our
comparison, we only consider the initial placement phase in the evaluation.

Figure 4.3 compares the energy consumption for different numbers of VMs,
ranging from 10 to 200, considering different types of VMs, as shown in
table 4.4. From the figure, we observe similar performance for a small number
of VMs. However, our algorithm begins to outperform EEVMP and LBMBP
as the number of VMs increase. Since VMP-ER requires fewer active PMs to
accommodate VM requests, it results in lower energy consumption. Additionally,
balancing the resource placement of VMs leads to more efficient utilization and
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Figure 4.2: The number of PMs required to host a given number of VMs
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Figure 4.4: Average resource wastage for a given number of VMs

avoids unnecessary potential migrations, positively impacting the overall data
center energy consumption.

In contrast, LBMBP tends to migrate VMs in its second phase to achieve
better placement, which consequently results in additional energy consumption
due to migration. EEVMP shows higher energy consumption as the number
of VMs increase because the algorithm primarily focuses on CPU resources
when allocating VMs, neglecting other resources like RAM. This results in
an increased number of migrations for workloads where VMs request a higher
amount of RAM, thereby affecting energy consumption. Figure 4.4 shows
the percentage of average resource wastage (CPU and RAM) when hosting
different numbers of VMs. A reduction in the number of active hosts indicates
an improvement in the average utilization of resources. For a small number of
VMs, LBMBP performs better than both EEVMP and VMP-ER. Comparing
the performance of our algorithm to LBMBP, both algorithms utilize resources
effectively with minimal resource waste.

However, as the number of VMs increase, our algorithm starts to yield better
results. This is because VMP-ER maintains higher resource utilization by
incorporating the resource usage factor at the host level, leading to more efficient
host selection and overall energy saving in the data center. Finally, VMP-



64 An Efficient Virtual Machine Placement Algorithm

ER achieves a slightly lower average SLA violation rate of 10.14% compared
to EEVMP and LBMBP, which have violation rates of 11.49% and 13.33%,
respectively.

4.4 Summary

Given the diverse characteristics of PMs and VMs, along with the multidimen-
sional resources and large-scale infrastructure of the cloud environment, virtual
machine placement has emerged as a significant area of research. This chapter
introduces an efficient algorithm aimed at minimizing power draw and resource
waste.

The proposed algorithm achieves power consumption reduction by decreasing
the number of running PMs. It focuses on merging VMs onto the least possible
number of PMs, minimizing the total energy consumption of the data center.
Moreover, the algorithm adopts an energy-awareness strategy by prioritizing
more efficient PMs in placement decisions. Decreasing the number of running
PMs and targeting energy-efficient hardware deliver dramatic decreases in
energy consumption.

Complementing power optimization, VMP-ER achieved notable improvements
in resource efficiency and SLA compliance compared to the other tested al-
gorithms. By effectively balancing resource optimization, energy efficiency,
and SLA adherence, VMP-ER serves as a reliable and efficient strategy for
optimizing cloud resource management.



5
Conclusion

5.1 Summary

This dissertation focused on improving resource utilization and energy effi-
ciency in cloud data centers, while also ensuring compliance with service level
agreements. To accomplish this, the study analyzed virtualization technologies,
VM consolidation strategies, and cloud simulation techniques to devise a more
efficient and realistic strategy for cloud resource management. This dissertation
contributes to the field by addressing key issues regarding the realism of cloud
simulations, VM placement optimization, and energy-aware scheduling.

The research started with an introduction to the problem space, followed by
a comprehensive background on cloud computing, detailing its architecture,
key enabling technologies, and approaches to resource management. Particular
attention was given to virtualization and VM consolidation, both of which
are essential for optimizing cloud operations. Moreover, the chapter presented
cloud simulation as a key tool for evaluating resource management strategies,
underlining the significance of realism in the simulations. A review of current
cloud simulators and comparative studies identified the challanges in accu-
rately modeling energy consumption and resource utilization in virtualized
environments.

Chapter 3 built on this foundation by introducing a novel realism scoring
framework designed to evaluate and improve accuracy of cloud simulations.
Using Mean Absolute Percentage Error, the framework analyzed differences
between simulated CPU utilization and energy consumption with real-world
measurements. The research employed controlled experiments with identical
setups across simulators, highlighting considerable discrepancies in how they
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model energy consumption and resource allocation. These findings underlined
the importance of improving internal modeling in cloud simulators to produce
research outcomes that are both reliable and applicable.

Chapter 4 furthered the research by proposing a VM placement algorithm
aimed at optimizing resource utilization and energy consumption in cloud data
centers. The algorithm, incorporating dynamic resource allocation techniques
and SLA constraints, demonstrated better performance compared to existing
VM placement strategies. Extensive simulations validated the algorithm’s
effectiveness, leveraging insights from the realism scoring framework introduced
in chapter 3. Results also demonstrated that the proposed approach signifi-
cantly increased energy efficiency without sacrificing application performance
or adherence to SLA requirements.

Overall, this dissertation contributes to the field of cloud computing and
simulation research by filling two essential gaps: the need for standardized
approaches to validate cloud simulators accuracy and the need for more effective
VM scheduling strategies to enhance energy efficiency. The findings offer
valuable insights for researchers and practitioners seeking to optimize cloud
resource management while ensuring precise simulation outcomes.

5.2 Contributions to Science

This dissertation contributes to the field of cloud computing research with the
following two theses:

Thesis 1: I proposed a scoring framework to evaluate the realism of cloud
simulators in terms of their accuracy in energy consumption and resource
utilization. This framework establishes a systematic strategy to determine the
fidelity of simulation results in contrast to real-world cloud behavior. A unified
evaluation equation is defined to mesaure simulators realism, exploiting the
overall deviation of simulated results to real world measurements. A standard-
ized workload configuration, encompassing 5 utilization levels and incorporating
various transitions to reflect the dynamic behavior of cloud environments, is
introduced to enable fair assessment across different simulators. The study
showed that simulators differ in their ability to replicate realistic cloud behav-
ior, offering a basis for researchers to analyze and improve cloud simulation
accuracy, and paving the way for more realistic and effective simulations for
cloud environments. [P2, P5]
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Thesis 2: I introduced VMP-ER (virtual machine placement for energy and
resource optimization), an algorithm to enhance energy efficiency and optimize
resource utilization in cloud data centers. The algorithm was designed to reduce
energy usage and prevent resource waste while upholding SLA commitments.
The algorithm uses PM level calculations when placing VMS, ensuring a balance
between different resources across PMs. Experimental results showed that VMP-
ER demonstrated better performance, compared to other strategies, in terms of
energy efficiency and resource utilization by minimizing the number of active
physical machines. [P1, P3, P4]

5.2.1 Author’s Publications During Research

(P1) Rjeib Hasanein, Kecskemeti Gabor. "VMP-ER: An Efficient Virtual
Machine Placement Algorithm for Energy and Resources Optimization
in Cloud Data Center". Algorithms. 2024 Jul 5;17(7):295. (Scopus Index
Q2).

(P2) Rjeib Hasanein, Kecskemeti Gabor. "An investigation on implementing
a scenario on different cloud simulators". MULTIDISZCIPLINÁRIS
TUDOMÁNYOK: A MISKOLCI EGYETEM KÖZLEMÉNYE. 2022;
12(3): 256-63.

(P3) Rjeib Hasanein, Kecskemeti Gabor. "Energy-Aware VM Consolidation
in Cloud Datacenter". In: Iványi, Péter (eds.) Abstract book for the
17th MIKLÓS IVÁNYI INTERNATIONAL PHD & DLA SYMPOSIUM
: ARCHITECTURAL, ENGINEERING AND INFORMATION SCI-
ENCES. Pécs, Hungary : Pollack Press (2021) 227 p. p. 107. ISBN:
9789634298113.

(P4) Rjeib Hasanein, Kecskemeti Gabor. "Energy-Aware VM migration in
Fog computing: A literature Review". In: Molnár, Dániel; Molnár,
Dóra (eds.) XXIV. Tavaszi Szél Konferencia 2021: Absztrakt kötet Bp,
Hungary : Association of Hungarian PHD and DLA Students (2021) 667
p. pp. 404-404. Paper: 532 , 1 p. ISBN: 9786155586996. Scientific.

(P5) Rjeib Hasanein, Kecskemeti Gabor. "Realism in Cloud Simulation: A
Scoring Framework". Simulation. (Scopus Index Q2). (Under Review).



68 Conclusion

5.2.2 Other Publications

(P5) Nsaif M, Kovásznai G, Rjeib Hasanein, Malik A, de Fréin R. "Evaluating
RNN Models for Multi-Step Traffic Matrix Prediction". In 2024 IEEE
3rd Conference on Information Technology and Data Science (CITDS)
2024 Aug 26 (pp. 1-6). IEEE.

(P6) Ali NS, Alhilali AH, Rjeib Hasanein, Alsharqi H, Al-Sadawi B. "Auto-
mated attendance management systems: systematic literature review".
International Journal of Technology Enhanced Learning. 2022;14(1):37-
65. (Scopus Index Q3).

5.3 Future Research Directions

We have identified several future research that could merit further exploration.
First, our current realism scoring framework introduced in chapter 3 focuses on
assessing CPU utilization and power consumption accuracy. We aim to extend
the framework by incorporating additional hardware resources (e.g. memory
utilization, disk I/O, and network usage), thermal data, and cooling strategies.
A more extensive collection of resource metrics enables researchers to enhance
the precision of cloud simulations and to improve alignment with real-world
cloud systems.

Second, we plan to leverage machine learning and artificial intelligence tech-
niques to improve efficiency in VM deployment and resource utilization by
dynamically learn and adjust placement strategies using historical workload and
adapting to current system conditions. Finally, we aspire to explore mutli-level
consolidation strategies (containers within VMs across multiple hosts), and
investigate whether it provides additional energy savings or it reduces the
effectiveness of consolidation due to the overhead of managing and migrating
containers.
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