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Chapter 1 Introduction 

1.1 Background 

Automatic Question Generation (AQG) is the process of creating meaningful and relevant questions 

automatically from various types of input, including text, structured data, images, or videos, using 

computational methods. In simple terms, it involves designing systems that can understand content, 

identify key information or patterns, and generate clear, contextually appropriate questions to support 

learning, comprehension assessment, conversational systems, or data exploration without requiring 

manual question crafting for each instance.  

The evolution of programming education necessitates a profound reflection on how assessment has 

been designed, delivered, and evaluated. Given that coding has become necessary across academic 

disciplines and industries, educational institutions increasingly need to develop robust and scalable 

ways to assess their students' programming knowledge and problem-solving skills. Learners today 

often study multiple programming languages, including Python, Java, C++, and C, each with unique 

syntactic and conceptual nuances, making standardized assessment even more challenging.  

While most recent studies in AQG have focused on generating questions from natural language texts 

and, to a lesser extent, visual data, AQG from source code remains underexplored despite its potential 

to transform programming education. Academic computer programming textbooks consist of 

materials such as text, images, and code examples. Most recent research on AQG systems focused 

primarily on natural language processing (NLP) techniques applied to generating questions from text, 

while some research focuses on generating questions from visuals or images [1], [P3]. The review 

paper [P2] suggests adopting question-generation methods that would create questions on 

programming-related topics and evaluation criteria for these questions. 

Traditional methods of question design in programming courses have struggled to keep pace with this 

growth. As noted in previous studies, manually crafted questions are time-consuming to produce, 

difficult to standardize across diverse learners and languages, and often fall short of covering the full 

spectrum of cognitive skills outlined in Bloom’s Taxonomy. Moreover, they tend to lack scalability, 

particularly in large or multi-language educational settings where hundreds of students may require 

tailored assessment materials. 

These challenges have driven a growing interest in AQG from source code. Rather than relying on 

static repositories of questions, AQG approaches analyze code directly, extracting structure, 

semantics, and logic to generate assessment items that dynamically align with the learner’s context. 

This dissertation responds to that demand by presenting a unified exploration of five distinct but 

complementary approaches: ontology-driven content generation, hybrid semantic-to-question 

modeling, template-based multi-language question generation via static code analysis, evaluation of 

large language models for code-based question generation, and a comprehensive Control Flow 

Graphs (CFG) and Program Dependence Graphs (PDG)-powered multi-language assessment system. 

Each approach contributes to a shared objective: to automate programming question generation in a 

pedagogically grounded, cognitively stratified, and linguistically inclusive way. The background and 

motivation for this work emerge directly from the collective recognition within these studies of the 

limitations in existing systems and the urgent need for more intelligent, adaptable, and scalable 

solutions in programming education assessment. 

1.2 Research Motivation 

Despite significant advancements in artificial intelligence-driven educational technologies, several 

critical gaps persist in the domain of automatic question generation for programming education. 

The first significant challenge is the lack of scalable systems capable of generating high-quality, 

diverse, and cognitively stratified questions directly from source code. As identified in the literature, 
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current template-based approaches often rely on rigid pattern matching and are limited in flexibility 

and adaptability across code types and educational objectives. Previous studies show that manually 

created questions are time-consuming and struggle to maintain cognitive coverage across large-scale 

deployments, reinforcing the necessity for automation that accommodates a range of programming 

logic and learner profiles. 

A second limitation is the insufficient support for multi-language question generation across most 

existing tools. Template and static analysis-based methods typically underperform when handling 

multi-language syntax and semantics, making them less effective for inclusive educational 

environments. Additionally, few frameworks integrate pedagogical models such as Bloom’s 

Taxonomy in a systematic way, resulting in assessment items that are either too shallow or 

mismatched in cognitive depth. 

Finally, current evaluation practices for code-based question generation lack standardization and 

pedagogical alignment. Although large language models (LLMs) like GPT-4 can generate 

syntactically fluent questions, their outputs vary in relevance, clarity, and educational value. Previous 

efforts rarely incorporate expert-validated, multi-dimensional evaluation frameworks, further limiting 

instructional reliability. 

These limitations underscore the need for a principled and pedagogically grounded approach to 

automated question generation from source code. By integrating semantic modeling, cognitive 

stratification, and rigorous evaluation practices, such an approach can support scalable and equitable 

learning assessments in programming education. 

1.3 Problem Statement 

The global expansion of computer science education has intensified the need for scalable, high-

quality assessment tools that can effectively serve diverse learners across various programming 

languages. Traditionally, the manual development of programming assessment questions has been 

labor-intensive, inconsistent, and insufficient to meet the rising demand for pedagogically sound, 

comprehensive evaluation materials in programming education. 

Automatic Question Generation (AQG) has emerged as a promising approach for scalable assessment 

across educational contexts. However, the current research landscape in AQG reveals a pronounced 

imbalance in focus and development across different input modalities. The field has been dominated 

by text-based question generation, benefiting from extensive datasets, mature neural models, and a 

clear trajectory from rule-based systems to large pre-trained transformers and LLMs. Similarly, visual 

question generation has seen growing attention, particularly for generating questions from images 

and, more recently, educational diagrams, leveraging advancements in multimodal learning. These 

areas have established robust evaluation practices and benchmarks, fueling rapid progress and 

adoption. 

In contrast, code-based question generation remains significantly underrepresented despite its critical 

potential in programming education. Generating meaningful and pedagogically aligned questions 

directly from source code presents unique challenges, including understanding code semantics, 

aligning questions with relevant programming concepts, and ensuring cognitive coverage across 

difficulty levels. The lack of standardized datasets and well-defined evaluation metrics further 

impedes systematic advancements in this domain. Most existing AQG research overlooks this niche, 

and only a few recent studies have begun exploring it, often in isolated or single-language contexts, 

leaving a substantial gap in the scalable assessment needs of programming education. 

Addressing this gap is essential to ensure equitable, effective, and scalable programming assessment 

tools that align with modern pedagogical frameworks and can adapt across multiple programming 

languages. Advancing code-based AQG requires not only robust generation methods that capture the 

semantics of source code but also the development of principled evaluation frameworks tailored to 

the unique requirements of programming education. 
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This dissertation aims to address these gaps to advance scalable, high-quality, and pedagogically 

aligned AQG systems that support equitable programming education worldwide. 

1.4 Research Aims 

This dissertation aims to advance programming education by designing, implementing, and 

evaluating automated systems that generate and assess programming questions directly from source 

code in a pedagogically grounded, linguistically inclusive, and cognitively diverse manner. This 

research seeks to bridge the gap between code-level semantic understanding and educational 

assessment, using various techniques including ontologies, template-based static analysis, and large 

language models.  

A central aim is to alleviate the manual workload of educators while improving assessment quality 

and scalability across multiple programming languages.  

Another aim is to systematically align generated questions with established cognitive learning 

models, especially Bloom’s Taxonomy, to ensure relevance across difficulty levels and educational 

contexts. 

This dissertation also aims to contribute robust evaluation methodologies combining automatic 

scoring and expert review, improving the reliability and instructional alignment of automatically 

generated content.  

Ultimately, the research aspires to provide an integrated, technically rigorous, and pedagogically valid 

foundation for future systems in programming assessment, especially in multi-language and large-

scale learning environments. 

These aims collectively shape the trajectory and cohesion of the dissertation’s contributions, 

reflecting the interdisciplinary intersection of code analysis, natural language generation, and 

educational measurement. 

1.5 Research Objectives 

This dissertation sets out to address the limitations outlined in the previous section by pursuing the 

following core objectives: 

1. To develop models and systems that generate programming questions automatically from 

source code. 

2. To ensure alignment with cognitive frameworks such as Bloom’s Taxonomy. 

3. To support multiple programming languages (Python, Java, C++, C) in a multi-language 

context. 

4. To evaluate both the technical quality and the educational value of the generated questions. 

Collectively, these objectives form the foundation of this dissertation’s contribution to programming 

education assessment through artificial intelligence-enhanced, source code-driven question 

generation and evaluation. 

1.6 Scope and Limitations 

This dissertation is bounded by the following scope and limitations, each drawn directly from the 

operational designs and stated constraints of the conducted studies: 

1. Focus on source code as input, not textbook content or problem descriptions. 

2. Covers four programming languages: Python, Java, C++, and C. 
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3. Question types generated include multiple-choice questions (MCQs), open-ended questions, 

Boolean (yes/no) questions, short answer questions, code tracing questions, fill-in-the-blank 

questions, error identification (debugging) questions, and creative coding questions. 

4. Evaluation consists of both automated scoring metrics and human expert review. 

5. The study does not include real-time feedback, adaptive learning mechanisms, or student 

modeling. 

These scope boundaries ensure a focused contribution to automated programming question generation 

from source code while acknowledging the limitations of generalizability. This allows future research 

to expand toward personalized or interactive assessment systems. 

1.7 Significance of the Study 

This dissertation makes several key contributions to the field of programming education assessment 

through automated question generation: 

1. It reduces the workload of educators by automating the creation of pedagogically aligned 

programming questions. 

2. It enhances inclusivity by supporting multi-language question generation and cognitively 

diverse assessment items. 

3. It introduces rigorous evaluation pipelines that combine automated metrics and expert review, 

contributing to the trustworthiness of educational artificial intelligence (AI). 

4. It contributes to the growing intersection of natural language processing (NLP), machine 

learning, and programming pedagogy by applying structured and AI methods to real-world 

educational tasks. 

Together, these contributions affirm the dissertation’s relevance not only as a technological endeavor 

but also as a meaningful advancement in equitable, scalable, and cognitively aligned programming 

education. 

1.8 Dissertation Structure 

This dissertation is organized to reflect the systematic development, analysis, and evaluation of five 

distinct yet interrelated approaches to automatic question generation and assessment from source 

code. 

Chapter 2: Literature Review. This chapter surveys the existing body of research in programming 

assessment, question generation, semantic code analysis, template design, and the application of large 

language models. The review contextualizes the core studies conducted in this dissertation. 

Chapters 3–7: Research Studies. The following five chapters present a standalone study, structured 

with an introduction, methodology, results, discussion, conclusion, and summary. 

Chapter 3: Ontology-Based Automatic Generation of Learning Materials for Python 

Programming. 

Chapter 4: Hybrid Approach for Automatic Question Generation from Program Codes. 

Chapter 5: Evaluating Large Language Models for Code-Based Question Generation in 

Programming Education. 

Chapter 6: Template-Based Question Generation from Code Using Static Code Analysis. 

Chapter 7: Multi-Language Static-Analysis System for Automatic Code-Based Question 

Generation. 
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Chapter 8: Conclusion. This chapter synthesizes the findings of the dissertation and presents: 

8.1 Contributions: Summarizing the theoretical and practical contributions across the five 

studies. 

8.2 Future Work: Outlining potential extensions and improvements for research and system 

deployment. 

8.3 Author’s Publications: listing publications resulting from this research. 

While each study stands independently, together they offer a layered, cohesive exploration of the 

dissertation’s overarching aim. This structure reflects both the linear development of the dissertation 

and the layered complexity of its contributions across computational, pedagogical, and linguistic 

dimensions. 
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Chapter 2 Literature Review 

2.1 Introduction 

Automatic question generation (AQG) from source code is situated at the intersection of educational 

assessment, programming pedagogy, static program analysis, and artificial intelligence. As 

programming becomes a fundamental skill in education and industry, the demand for scalable, 

cognitively diverse, and pedagogically sound assessment frameworks has intensified. This chapter 

synthesizes the foundational literature across these intersecting domains, organizing contributions 

and identifying gaps thematically across ontology-driven instructional content, graph-based static 

analysis, template-based question systems, large language models (LLMs), multi-language question 

generation, and the application of Bloom’s Taxonomy in automated assessment frameworks. 

2.2 Ontology-Based Instructional Content Generation 

Effective instruction in programming education requires comprehensive and adaptive learning 

materials. These materials include textual and visual content, interactive exercises, tutorials, real-

world examples, assessment tools, and personalized pathways that reinforce hands-on practice and 

real-world applicability. Textual content delivers explanations, code examples, and problem sets, 

while interactive exercises and tutorials facilitate active learning and progressive skill development. 

Real-world examples bridge theory with practice, and assessment tools measure student progress and 

understanding. The overarching aim is to provide accessible, engaging, and personalized resources 

that support varied learning preferences. 

Programming languages are a central area of study in computer science and software development. 

Developing effective methods for teaching programming concepts is essential. Interest in question 

generation techniques for programming languages has grown as a means of creating scalable practice 

opportunities, reinforcing learning, and enabling ongoing assessment [P2]. The paper [P] applied 

ontology to develop a question-generation approach for programming concepts. 

Several studies have investigated the possibility of automatic generation of learning materials and 

their positive impact on enhancing student engagement and learning outcomes. Vergara et al. [2] 

found that AI-generated personalized learning materials boosted students’ motivation and 

performance in mathematics courses. At the same time, Liu et al. [3] highlighted how AI-powered 

tools assist educators by automating quiz and worksheet creation, reducing manual workload while 

maintaining instructional quality. Lin et al. [4] examined the relationship between student 

engagement and outcomes in a cyber-flipped course, finding a positive correlation between active 

participation and academic performance, thereby underscoring the value of dynamic course materials 

in blended learning environments. 

Over the years, numerous researchers have explored the use of ontologies in education to 

automatically create and structure learning materials, enhancing personalization and interoperability 

within learning management systems [5]. For example, [6] proposed an intelligent ontology-based 

system to automate tasks such as course scheduling and academic advising, demonstrating 

improvements in efficiency and student experience through structured domain knowledge. William 

and Joselin [5] discussed how ontologies enhance personalized learning, advocating for their use in 

shifting away from one-size-fits-all models to adaptive, student-centered instruction. 

In [7], a method for constructing structured knowledge graphs using word embeddings and NLP 

techniques was introduced, enabling automated semantic extraction and relationship mapping from 

educational content. This structured approach facilitates reference definition (prerequisites, hierarchy, 

relatedness), supporting the creation of dynamic, interconnected learning resources. Similarly, 

Stephen [8] explored the use of LLMs like GPT-3 to generate CS learning materials across topics, 

evaluating quality, relevance, and coherence to propose innovative methods for scalable CS 
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education. Flanagan et al. [9] proposed leveraging NLP and machine learning (ML) to structure 

educational content extracted from various sources, aligning it with learning objectives to improve 

digital learning environments. Meanwhile, [10] detailed the construction and practical application of 

a knowledge graph within Australian school science curricula, focusing on personalized learning and 

adaptive tutoring system integration. 

Despite the growth of ontology-driven learning material generation, significant limitations remain: 

insufficient knowledge representation structures, limited flexibility and context awareness, 

challenges in reusability, and the lack of deep, adaptive personalization. Current systems often require 

human oversight, lack the interactivity and nuanced feedback of human instruction, and fall short in 

fostering critical problem-solving skills. Continued AI advancements in contextual understanding and 

adaptability are necessary to overcome these limitations. Table 2.1 compares traditional methods with 

ontology-based approaches, highlighting the latter’s strengths in semantic structuring, flexibility, 

scalability, and personalization, which are essential for modern, learner-centered programming 

education. The complexity of question generation requires expertise, deep content knowledge, and 

substantial time investment, especially in online learning contexts since the emergence of syntax-

based and semantic-based question generation models in 2014 [11], ontologies have proven effective 

for standardizing knowledge representation across domains, including e-learning, facilitating 

personalized and efficient learning [P9]. 

Table 2.1 Comparison between the traditional approaches and ontology-based approaches 

Feature/Aspect Traditional Approaches Ontology-based Approaches References 

Knowledge Structure linear and hierarchical semantic and interconnected [6], [P1] 

Flexibility 
limited adaptability to new 

topics 

highly adaptable to new knowledge and 

domains 
[7], [12] 

Context Awareness 
minimal context 

consideration 

rich context understanding through 

relationships 
[13], [P8] 

 Content Reusability low reusability of materials high reusability due to modular components [P3], [P9] 

Personalization 
basic customization, often 

static 

dynamic personalization based on learner 

profiles 
[5], [14] 

Scalability 
difficult to scale with 

growing content 
easily scalable with ontological frameworks [15], [16] 

Interoperability often siloed systems enhanced interoperability across platforms [2], [17] 

Knowledge 

Representation 

simple data structures (e.g., 

text, images) 

rich semantic representation using classes, 

properties, and relationships 
[18], [P13] 

Maintenance 
time-consuming updates and 

revisions 

more accessible updates due to modular 

ontology design 
[19], [20] 

Collaboration 

Support 

limited collaboration 

features 

facilitates collaboration through shared 

ontologies 
[8], [P9] 

Learning Pathways 
predefined and rigid 

learning paths 

dynamic learning pathways based on learner 

needs 
[2], [3] 

Assessment Tools basic quizzes and tests 
adaptive assessments based on learner 

progress 
[21], [22] 

Feedback Mechanism 
limited feedback based on 

performance 

contextual feedback based on semantic 

analysis 
[9], [23] 
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Domain knowledge models, particularly those implemented with Python and Owlready2, offer 

flexible and integrable representations for e-learning systems [P8]. They enable adaptive learning 

systems capable of tailoring experiences to individual learners, reinforcing efficient knowledge 

transfer. 

Although question generation in programming education holds transformative potential, 

implementation remains partial in modern contexts. Programming languages, central to CS education, 

demand effective teaching methods, with question-generation approaches enabling scalable practice 

and assessment opportunities [P3]. 

To support learning, Urazova [24] developed a system for automatic UML database design question 

generation and response evaluation using AI and NLP, providing students with practical, self-

assessment tools. Russell [25] explored automated code-tracing exercises in CS1 courses, 

demonstrating their utility in reinforcing control flow and problem-solving skills, while 

acknowledging challenges in replacing traditional teaching approaches. 

Large language models (LLMs) have recently been applied to generate programming tasks and 

explanations, offering scalable solutions for instructors [26]. However, challenges remain, including 

potential bias, dependence on large-scale models, computational demands, and difficulties in 

generating high-quality training data, all of which must be addressed when implementing these 

technologies in educational contexts [27]. 

2.3 Static Code Analysis and Graph-Based Representations 

Static code analysis is employed across various domains, particularly in compiler design and security 

[28]. Static code analysis is used to automate checking student programming assignments. It verifies 

the correctness of student programming assignments concerning assignment instructions [29]. Many 

static analysis techniques are based on code representation, and it is critical in performing other tasks 

that involve drawing deductions about semantic relationships between program statements [30]. A 

proper code representation procedure allows deriving meaningful source code features that capture 

different aspects of the source code structure and behavior. Graph-based structures have mainly been 

employed in recent innovations in code representation to capture both the syntactic and the semantic 

details embedded in the code. The Abstract Syntax Tree (AST), Control Flow Graph (CFG), and Data 

Flow Graph (DFG) are the most commonly used forms of representation. The definitions of AST, 

CFG, and DFG are as follows: 

Definition 1: Abstract Syntax Tree (AST) 

An Abstract Syntax Tree for the function 𝑓𝑖 in a program 𝑃 = {𝑓1, 𝑓2, … , 𝑓𝑛} is represented as a graph 

𝐺𝐴
𝑖 = (𝑉𝐴

𝑖, 𝐸𝐴
𝑖 ) where 𝑉𝐴

𝑖 is the set of leaf nodes and 𝐸𝐴
𝑖  is the set of directed edges, where each edge 

connects a parent node to its corresponding child node. 

Definition 2: Control Flow Graph (CFG) 

The Control Flow Graph for the function 𝑓𝑖 is defined as a graph 𝐺𝐶
𝑖 = (𝑉𝐶

𝑖 , 𝐸𝐶
𝑖 ) where 𝑉𝐶

𝑖 is a set of 

nodes and 𝐸𝐶
𝑖  is a set of directed edges representing the control flow between the nodes. 

 

Definition 3: Data Flow Graph (DFG) 

A Data Flow Graph for the function 𝑓𝑖 is defined as a graph 𝐺𝐷
𝑖 = (𝑉𝐷

𝑖 , 𝐸𝐷
𝑖 ) where 𝑉𝐷

𝑖  is a set of nodes 

and 𝐸𝐷
𝑖  is a set of directed edges capturing variable accesses and modifications during the execution. 

The following is a simple example of a small function and shows how its AST, CFG, and DFG would 

look in a basic form. This will give the reader a clear idea of how each graph is constructed and what 

it represents. A simple Python function illustrates these structures: 

# Example Function 
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def add(x, y): 

    z = x + y 

    return z 

1. Abstract Syntax Tree (AST): The AST represents the syntactic structure of the code. It focuses 

on how the source code is structured, not how it executes or flows. 

AST Nodes (simplified): 

• FunctionDef 

o Name: add 

o Parameters: x, y 

o Body: 

▪ Assignment: z = x + y 

▪ Expression: x + y 

▪ Return: z 

AST Edges: 

• Each node connects to its child syntax elements. For example: 

o FunctionDef → Assignment 

o Assignment → Expression 

o Expression → x, Expression → y 

o FunctionDef → Return 

2. Control Flow Graph (CFG): The CFG shows the control flow from one instruction to another. 

CFG Nodes: 

1. Start 

2. z = x + y 

3. return z 

4. End 

CFG Edges: 

• Start → Assignment 

• Assignment → Return 

• Return → End 

Note: Since there is no branching (like if or loop), the CFG is linear. 

3. Data Flow Graph (DFG): The DFG captures how data (variables) are used and modified. 

DFG Nodes (variables): x, y, and z. 

DFG Edges: 

• x → z (z is computed from x) 

• y → z 

• z → return (z is used in return) 
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This tells us that z depends on x and y and is then used in the return statement. Table 2.2 shows a 

summary of AST, CFG, and PDG. 

Table 2.2 AST, CFG, and PDG summary table 

Graph Type What It Shows Example Focus 

AST Code structure z = x + y is an assignment with an addition expression 

CFG Execution order Start → Compute → Return 

DFG Variable flow x, y → z → return 

 

2.3.1 Automatic Question Generation 

Automatic question generation (AQG) has developed as a considerable scholarly subject in learning 

technology, and it has been used in many fields, such as programming education. Early research in 

this area tended to target the case of generating natural language questions based on natural language 

text and not as much about generating program questions based on program code [P3]. The 

combination of CFG and PDG analyzers and question generation systems can considerably improve 

the quality and relevance of automatically created questions. A combination of the CFGs to provide 

program control flow information with PDGs to provide data dependency information can give a 

more comprehensive view of the program's behavior. In education, artificial intelligence (AI) presents 

not only challenges but also opportunities, especially in its application to gauge student 

understanding. The rise of AI-generated code necessitates rethinking assessment practices to 

accurately measure student understanding and effort [31]. Systems using AST, CFG, and DDG have 

been developed for grading programming skills [32], demonstrating the potential of structured code 

analysis for automated evaluation. 

2.3.2 Program Analysis 

The problem of code analysis in programming languages has been discussed in several settings, but 

little has been said about a particular case of question generation. The combination of CFG and PDG, 

analysis done when performing code comprehension, has been examined under various settings. The 

paper [33] has shown that graph-based neural networks can well be applied to the problem of code 

understanding by combining information in abstract syntax trees and in data flow graphs. In the same 

way, the authors in [34] employed graph-based forms to enhance bug detection and code completion. 

These strategies point to the possibility of using graph-based code analyses to build a better 

understanding of code at a deeper level, though they have not been used directly to answer questions. 

More relevant to the present work, the authors [35] built a natural language generator that takes a 

Python code snippet and generates a natural language description of that code. Their strategy involved 

a language-specific parser coupled with standard, intermediate representations, just like the current 

work. Nevertheless, they were concerned with code summarization and giving feedback, and did not 

discuss the difficulties of achieving balance in coverage of algorithms and cognitive levels.  

2.3.3 Control Flow Graph Analyzers 

Control Flow Graphs are especially useful for program analysis abstractions and indicate all potential 

paths of execution in a program. A graph is a model of a program in that each node corresponds to a 

basic block of code, and edges indicate the flow of control between blocks. The CFG analyzers exploit 

this format to obtain information about the structure of the program, to find out whether or not there 

are possible loops and conditional transitions, and to identify unreachable code blocks [30]. Such 

information can be used invaluably in the generation of questions so that one can then be asked 

questions that determine how the programmer understands the mechanics of control flows, including 

loop invariants, branch conditions, and exception handling. Modeling and analysis of the execution 

flow of a program is paramount in its correctness, reliability, and security [36]. It is possible to extract 
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syntax and semantic information of source code using control flow graphs, which allows a more 

detailed analysis of the behavior of programs [30]. 

Questions about the order of statement execution, the circumstances under which different blocks of 

code are entered, and the possibility of entering an infinite loop or dead code are answerable by 

studying the control flow. Suggesting a student to concentrate on the control flow, such questions 

may examine his/her grasp of the logic of the program. Also, CFGs can be used to determine 

important areas of code that can be looked at in more detail, e.g., performance bottlenecks or error-

prone areas. 

2.3.4 Program Dependence Graph Analyzers 

Program Dependence Graphs are a contrasting view in that they explicitly specify the data and control 

dependency between distinct program statements. Nodes in a PDG are the individual statements, 

whereas the edges show whether the value computed by one statement is referenced by another (data 

dependence) or whether the evaluation of one statement is conditional on the result of another (control 

dependence) [30]. This representation provides an analysis of critical data dependencies, potential 

data races, and possibilities of code optimization with PDG analyzers. They give a structure to how 

questions can be generated, which tests the understanding of the programmer on issues like the flow 

of data, side effects, and effects of changes in a particular variable or statement. All vulnerable cases 

of buffer overflows are spatial mistakes, which can be diagnosed with the assistance of spatial 

information in a data flow graph [37]. Buffer overflow can be discovered with the aid of static data 

flow analysis. 

The PDGs are also capable of determining the inputs that influence or determine specific outputs, 

which is an important aspect of numerous security vulnerabilities. Data flow presents an analysis of 

how data is directed through a program and what is done to the data [38]. Data flow is a dependency 

relationship among variables, with nodes representing variables and edges denoting what caused the 

value of a variable [39]. Data flow analysis may discover a variety of bugs and is among the most 

frequently used approaches in practice [40]. Following the interdependency of variables allows 

determining the possible vulnerabilities, including a buffer overflow or a format string, to be 

identified. 

2.3.5 Hybrid CFG-PDG Analysis 

Combining CFG and PDG analyzers provides an effective method to generate questions and thus 

allows the generation of questions requiring insight into control flow and data dependencies. This 

combination enables the creation of questions that are more complicated and subtle and tests the 

reasoning of a learner about the interaction of various program components. The integration of data 

and control that has been implemented in applications is more intriguing when designing a custom 

architecture [41]. For example, one may pose questions like whether a modification in a specific 

variable will affect the execution course of the program or what conditions could cause a particular 

data dependency to produce a run-time error. This would allow for coming up with more difficult and 

pertinent actual programming situations. Furthermore, CFG-PDG combinations can also be used to 

discover the most critical control-sensitive and data-dependent code sections to generate questions 

that pinpoint the most important parts of program behavior. Combining these techniques improves 

the capability of defining questions that can assess single pieces of code and code interactions 

between control flow and data dependency. Beyond question generation, the synergy between CFG 

and PDG provides broader benefits for comprehensive software understanding and analysis, as 

discussed next. 

2.3.6 Synergistic Use of CFG and PDG 

Studies that expand AST-based code representations to cover paths in CFG and PDG have 

demonstrated dramatic performance benefits to software engineering activities like method naming, 

classification, and clone detection [42]. This combination of CFG and PDG analyzers provides a more 
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comprehensive picture of the program behavior. It allows us to generate questions that will focus on 

control flow and data dependencies. The study of the interaction between these two representations 

can enable the production of questions that demand deeper knowledge regarding the functionality of 

the program in general and the possible interactions between the various sections of the code. Such 

integration allows the formulation of questions that are more rigorous and insightful. It results in a 

more elegant measure of the fairness of assessing the competency of a programmer. Such a 

combination presents stronger questions, and the programmer understands the code better.  

The combination of PDGs and CFGs presents a synergistic effect and is useful when it comes to 

finding vulnerabilities in code. When control flow and data dependency information are combined, 

this capability emerges to discover fine-grained defects that may remain elusive to either of the 

techniques individually [43]. 

2.3.7 Question Generation Strategies 

Designing effective question-generation strategies is critically important in the design of assessments 

that not only measure the knowledge a programmer has about code, but also measure it accurately. 

Such strategies must apply to the characteristics of CFGs and PDGs and utilize the strong points of 

these subjects to outline thought-provoking and relevant questions. Among these approaches are 

identifying high-priority sections of code, including loops, conditional statements, or function calls, 

and creating questions about their behavior. The other way is following data dependencies with the 

PDG, forming questions about the information flow in the program. The assessment should be on 

relevant issues. 

2.4 Template-Based and Question Generation Strategies 

Template-based approaches have been widely used in AQG across various domains. The paper [44] 

provided a comprehensive survey of template-based question-generation techniques, highlighting 

their effectiveness in ensuring question quality and relevance. It mentioned that the template library 

is a major component of question-generation systems. The paper [45] addressed educators' challenges 

in creating exam questions, particularly in remote learning environments. To tackle these challenges, 

the authors proposed a new approach that combines generative software development principles with 

feature-oriented product line engineering. This approach was designed to automate the creation of 

exam questions, specifically single-choice questions, using written templates. The proposed generator 

allows educators to create families of questions that vary based on specific features and parameters. 

However, existing template-based AQG methods often fall short in supporting multi-language 

contexts, balanced algorithm coverage, and strategic difficulty alignment.  

This dissertation builds on these foundations while addressing these limitations, ensuring multi-

language support and cognitive diversity in question generation. 

2.5 Bloom’s Taxonomy and Cognitive Alignment 

Bloom's Taxonomy is a starting point from which a set of questions can be classified according to the 

complexity of thinking skills [46]. Bloom's Taxonomy is a foundational framework for categorizing 

questions based on cognitive complexity [46]. It includes remembering, understanding, applying, 

analyzing, evaluating, and creating [46], [47]. In [48], the authors have performed a thorough review 

of factors that complicate introductory programming tasks and have established several major factors 

that make questions more or less challenging. Their result offers valuable information in preparing 

questions of adequate difficulty based on varying programming languages. The tactical use of 

programming languages' difficulty level has been argued on different educational fronts. These 

learning theories guide us in generating questions, especially in providing proper cognitive demand, 

difficulty levels, and language-specific issues. 

Integrating Bloom's Taxonomy into AQG frameworks marked a significant advancement in aligning 

educational technology with pedagogical objectives. This integration enables the generation of 
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assessment items systematically mapped to cognitive skill levels, ensuring that instruction and 

evaluation are pedagogically sound and targeted to desired learning outcomes. Recent AQG systems 

utilize Bloom’s Taxonomy to classify and generate questions that target specific cognitive levels, 

from basic recall (remembering) to higher-order thinking skills like learners’ cognitive development 

and support differentiated instruction [49]. It encompasses remembering, understanding, applying, 

analyzing, evaluating, and creating [46], [47], [50]. This taxonomy helps assess the cognitive skills 

that the questions aim to consider. Bloom's Taxonomy is used to classify educational learning 

objectives into levels of complexity and specificity. The following are the six levels from the simplest 

to the most complex: 

1. Remembering: This is the basic level where learners must recall facts and concepts. It involves 

recognizing and recalling relevant knowledge stored in memory. 

2. Understanding: Learners demonstrate comprehension by explaining ideas or concepts, 

summarizing information, and interpreting meaning. 

3. Applying: It involves using knowledge in new situations. Learners can apply what they have 

learned to solve problems or complete tasks, demonstrating practical understanding. 

4. Analyzing: Learners break down information into parts to understand its structure. They can 

differentiate between facts and inferences and identify relationships among various 

components. 

5. Evaluating: Learners make judgments based on criteria and standards. They can critique ideas, 

assess the validity of arguments, and provide justification for their opinions. 

6. Creating: This is the highest level of Bloom's Taxonomy, where learners combine elements to 

form a coherent or functional whole. They can design new products, propose solutions, or 

generate original ideas. 

These levels are essential for educators to design assessments and questions that target various 

cognitive skills, ensuring a comprehensive evaluation of student learning. In the context of AQG, 

understanding these levels is crucial for creating questions that effectively assess students' knowledge 

and cognitive abilities.  

2.6 Question Types in Programming Education 

Programming instructors use a variety of question formats to assess and enhance student 

understanding, often leveraging automatic question generation from source code. Each question type 

serves different learning objectives and challenges. The following are the question types in 

programming education: 

1- Multiple-Choice Questions (MCQs): MCQs are a popular assessment tool in programming courses. 

MCQs can be an effective and motivating way for students to test their understanding of programming 

concepts [51]. 

2- Open-Ended Questions: Open-ended questions in programming education require students to 

provide an unstructured response, such as explaining code or writing their own solution [52]. 

3- Boolean (Yes/No) Questions: Yes/No or True/False questions are a simple form of assessment 

where students judge the correctness of a statement. In programming education, these judgment 

questions are considered a type of closed-ended exercise alongside MCQs and fill-in-the-blanks [53]. 

4- Short Answer Questions: Short answer questions require a brief textual or numeric response rather 

than selecting from given options. In programming, this format is often seen in questions like “What 

is the output of the following code?” or “Give the Big-O time complexity of this algorithm.” These 

questions compel students to recall or deduce an answer without cues. They can assess understanding 

more directly than MCQs, and recent systems have begun to automatically grade such answers [54]. 
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5- Code Tracing Questions: Code tracing questions present a piece of code and ask students to 

simulate its execution to determine the outcome or state. A typical prompt might be: “Given this code, 

what will be the output?” or “What values do the variables hold after execution?” This question type 

is well-established in programming education as a way to test understanding of control flow and state 

changes [55]. 

6- Fill-in-the-Blank Questions: Fill-in-the-blank questions in programming provide a code snippet or 

sentence with certain parts removed, and students must supply the missing piece. This format is often 

used to focus attention on specific syntax or concepts [56]. 

7- Error Identification (Debugging) Questions: Error identification questions, also known as 

debugging tasks, present students with faulty code and ask them to find and/or fix the error. These 

questions target a student's ability to read code critically and understand common bugs. For instance, 

a prompt may say: “This code is supposed to do X but it does not. What is the error and how would 

you fix it?” [57]. 

8- Creative Coding Questions: Creative coding tasks are open-ended prompts that require students to 

write original code to achieve some goal, often with room for creative expression or multiple correct 

solutions. Unlike the strictly defined answers of the above formats, these questions might ask students 

to “Design a program that meets scenario X” or “Create a graphic using code that accomplishes Y.” 

The emphasis is on problem-solving, design, and creativity in programming [58]. 

2.7 Large Language Models in Programming Question Generation 

Advances in NLP have led to the emergence of large language models (LLMs). These language 

models have proven their potential in different NLP applications, including question generation and 

evaluation [59]. This section reviews the related works that laid the foundations for developing and 

evaluating LLMs in generative artificial intelligence. 

2.7.1 Background On Language Models in NLP 

The development of LLMs has been influential [60]. In the past decade, the emergence of LLMs has 

driven a paradigm shift in NLP [61]. These models are characterized by their immense size, often 

containing billions of parameters. They are pre-trained on vast amounts of data, which enables them 

to learn patterns, syntax, and semantics of natural language. Pre-training is followed by fine-tuning 

specific tasks, making them adaptable to various applications. 

Other methods of question generation involve building specialized ontologies and integrating them 

with artificial intelligence models, such as the research conducted by Alshboul and Baksa-Varga [P3]. 

The authors adopt a hybrid ontology and artificial intelligence approach to build an automatic 

question-generation model. It lacks automatic evaluation criteria. 

OpenAI's GPT models have continuously improved language generation capabilities, starting with 

GPT-1 and advancing to GPT-2, GPT-3, and beyond [62]. GPT-3.5, for example, delivered human-

level performance on different language tasks, from translation to question-answering. 

LLMs have proved their adaptability in NLP tasks. They perform well in text generation, 

summarization, translation, sentiment analysis, and various other tasks. The capacity to understand 

and generate text in multiple languages and domains causes such adaptability [62]. While LLMs are 

powerful tools, they are not without their challenges. Their massive size demands substantial 

computational resources, making them inaccessible to many researchers and organizations. These 

models have been criticized for keeping biases in their training data [63]. Research efforts to mitigate 

these biases and make LLMs fairer have gained attention. 

One of LLMs' strengths is their adaptability through fine-tuning [64]. Researchers and practitioners 

can customize these models for domain-specific tasks, allowing them to perform well in specialized 

domains. The fine-tuning process involves training the model on task-specific data, enhancing 
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performance and relevance to specific tasks. The growth of LLMs has raised ethical and societal 

concerns. The ability of these models to generate coherent, human-like responses also means they 

might be used for malicious activities such as misinformation and deepfakes. Discussions on 

responsible artificial intelligence and ethical use are ongoing. LLMs have become the focus of many 

studies, ranging from model architecture and training techniques to healthcare, finance, and education 

applications. Researchers are exploring ways to harness LLMs' power to benefit society while 

mitigating potential harms [65]. 

2.7.2 Question Generation with Large Language Models 

Integrating LLMs into language processing has significantly advanced question-generation 

capabilities. Because of their extensive pre-training on vast text corpora, LLMs have transformed 

how questions are generated. This section explores the evolution and impact of LLMs on question 

generation, emphasizing their contributions to the field of NLP [66]. 

1) From rule-based to data-driven approach: Before the era of LLMs, question generation primarily 

relied on templates and rule-based methods. These techniques effectively generated simple questions 

but were inadequate in generating relevant and diverse questions. LLMs have adopted a data-driven 

approach. Their ability to learn complex language patterns and semantics has led to the generation of 

questions customized to the specific content from which they are derived [67].  

2) Contextual understanding and coherence: LLMs can contextualize the input text to generate 

coherent and relevant outputs, unlike rule-based methods, which often produce disconnected or 

irrelevant questions. Contextual understanding is critical when generating questions from documents 

with complex structures, technical language, or nuanced information [68]. 

3) Fine-tuning for question generation: Fine-tuning involves adapting pre-trained models to specific 

tasks by training them on question-generation datasets [69]. It allows LLMs to learn the patterns for 

various contexts, which improves their performance. 

4) Challenges and opportunities: LLMs offer great potential in question generation, but challenges 

exist. Generating clear and concise questions with different levels of complexity and coverage 

remains an ongoing research challenge [70]. Our research addresses these challenges by introducing 

evaluation criteria such as clarity, conciseness, and coverage to comprehensively evaluate LLMs in 

question generation. 

2.7.3 Evaluation Metrics for NLP 

Evaluating language processing models is critical to NLP research and application development. 

Effective evaluation metrics allow researchers and practitioners to assess models' performance in 

various tasks quantitatively and qualitatively [71]. 

1) The need for evaluation metrics: Evaluation metrics judge how the performance of NLP models is 

measured. NLP tasks have different aspects and often involve generating or processing human 

language, making it challenging to assess models’ performance objectively. Metrics provide a 

structured framework for evaluating models’ output, identifying strengths and weaknesses, tracking 

progress, and guiding model development [72]. 

2) NLP evaluation metrics: For NLP evaluation, several widely accepted evaluation metrics have 

been developed to assess different aspects of model performance. These include clarity, which 

measures the similarity between generated and reference text, and ROUGE (Recall-Oriented 

Understudy for Gisting Evaluation) for text summarization tasks [73]. These metrics evaluate the 

generated text’s specific linguistic qualities. 

3) Objective evaluation: Objective metrics can be used to assess the capability of NLP models. For 

example, clarity provides quantitative scores indicating the clarity between the generated and 

reference text. Combining metrics like relevance, coherence, and conciseness offers a more 
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comprehensive understanding of model performance [74]. Our research adopts this set of criteria to 

assess LLMs’ performance in generating questions from program codes. 

4) Ethical considerations in metrics: Using evaluation metrics raises ethical concerns. Metrics should 

be carefully chosen to avoid reinforcing biases or undesirable behaviors in NLP models [75]. 

Responsible artificial intelligence practices involve developing metrics that encourage fairness and 

ethical behavior in NLP models. The approach proposed in the current research addresses these 

ethical concerns while evaluating LLMs’ performance and considering issues related to relevance 

and clarity in question generation. As LLMs become more powerful, ethical considerations have 

become important. Developing responsible artificial intelligence and mitigating biases in LLMs are 

critical [76]. 

2.7.4 State-of-the-art LLMS 

Various models have emerged, each showing considerable performance across language processing 

tasks [65]. 

1) GPT-4: Building on the success of its predecessors, GPT-4 is known for its language generation 

ability [77]. GPT-4 exhibits contextual understanding due to its larger model size, improved training 

techniques, and increased parameters [78]. GPT-40314 has a smaller context capacity than GPT-4-

0613. GPT-4 has set a high benchmark for other models in question generation. 

2) GPT-3.5: It is the updated version of GPT-3; a later version is 3.5-turbo. It supports 4096 tokens, 

is free on the web interface, and has a paid API. The capabilities of GPT3.5-turbo-0613 result in 

better output than GPT-3 for text processing tasks [79]. 

3) Llama-2: Llama-2 specializes in chat-based interactions and is designed to generate human-like 

responses [80]. This specialization makes Llama2 a strong candidate for dialogue-based question 

generation. 

4) H2OGPT Variants: The H2OGPT series features fine-tuned variants for specific domains. 

H2OGPTgm-oasst1-en-2048-falcon-40b and H2OGPT-oasst1-falcon40b offer promising 

performance for domain-specific applications [81]. These models are customized to generate 

questions from technical content, which aligns with our research’s focus on code-based question 

generation. Several versions with different parameter sizes are available; all are open-source and can 

be optimized for specific domains. Each falcon has a distinct parameter capacity or token size [80]. 

The following is a brief description of each model: 

• H2OGPT-gm-oasst1-en-2048-falcon-40b-v1: It has the largest parameter size in open-source 

models, reaching 40 billion parameters, and the precision of text generation and understanding 

of NLP is high [82]. 

• H2OGPT-gm-oasst1-en-2048-falcon-40b-v2: This version is similar to the previous version, 

as they both trained on the same dataset; however, different personalization settings were 

added. Additionally, both versions support 2048 tokens [82]. 

• Falcon-40b-sft-top1-560: This model supports up to 2048 tokens and performs very well in 

text generation. It was trained on the OSSAT dataset [82]. 

• H2OGPT-oasst1-falcon-40b: This version is the initial release with 40 billion parameters and 

supports 2048 tokens. However, the other versions have more refined training data than the 

initial version [82]. 

• H2OGPT-gm-oasst1-en-2048-falcon-7b-v3: This model is significantly smaller than the other 

Falcon models; however, it is also trained on the OSSAT data set, and supports the context 

length of 2048 [82]. 
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• Falcon-40b-instruct: This model is the newer version of Falcon and uses the same dataset as 

the previous ones. However, this version is tuned specifically to perform tasks and follow 

instructions precisely. This version performs better on the required tasks than the previous ones 

[82]. 

5) Vicuna-33b: Vicuna-33b focuses on specialized applications [83]. Its model size of 33 billion 

parameters combines scalability with domain expertise. Vicuna-33b’s potential for generating 

questions in specific technical domains might provide valuable insights into the feasibility of using 

such models for specialized tasks. 

6) Claude: The Claude model is from Google, and it has a huge input token limit that reaches up to 

100K user input. Claude performs well on multiple-choice tasks [84]. However, when preparing the 

paper, this model is only available in the USA and the UK, which is considered an access limitation 

[85]. The parameter size for this model reaches 130 billion parameters. Furthermore, for text 

generation, it is stated that it outperforms GPT-3.5, but GPT-4 remains better at prompt understanding 

and coding [86]. 

2.8 Evaluation Metrics for Code-Based Generated Questions 

Evaluating automatically generated questions is still a problematic issue, and multiple metrics and 

methods are suggested in the literature. Authors in [87] have proposed a framework to measure the 

quality of multiple-choice questions that are produced automatically in terms of relevance, clarity, 

and educational worth. The paper [51] proposes some evaluation measures to gauge the quality and 

effectiveness of the generated multiple-choice questions (MCQs). These parameters make questions 

relevant, varied, and appropriate for educational programs. The primary measurement criteria include 

question relevance score, diversity index, and difficulty alignment accuracy. In another paper [88], 

the authors mentioned that large language models automatically generate multiple-choice questions 

in curricula CS0 and CS1. The course outline of both CS0 and CS1 is the core input data into the 

EduCS system. The paper includes a list of evaluation metrics that will help to evaluate the quality 

of MCQs provided by the EduCS system. The most relevant aspects of these assessment measures 

were clarity, relevance, and difficulty level. As a knowledge representation technique [P13], ontology 

has been used to build semantic models for the Python language [P8], [P9]. The paper [P1] used 

automatic evaluation measures, BERT-based semantic accuracy, to assess the content. The paper [P3] 

does not cover automatic evaluation but proposes a hybrid model with human expert evaluations 

focused on code difficulty and generated question validity. Overall, assessing the quality of machine-

generated code-based questions calls for robust metrics beyond conventional automated scoring 

methods. 

2.9 Summary 

This chapter examined the intersection of automatic question generation (AQG) and programming 

education, emphasizing how ontology-driven methods, graph-based code analysis, and large 

language models (LLMs) contribute to scalable, high-quality assessment systems. The chapter 

reviewed ontology-based instructional content generation, highlighting its role in structuring and 

personalizing learning materials for programming education while enhancing content reuse and 

consistency.  

It also explored how static code analysis techniques, particularly Abstract Syntax Trees (ASTs), 

Control Flow Graphs (CFGs), and Program Dependence Graphs (PDGs), provide a structured 

foundation for analyzing code semantics to inform AQG. The integration of these graph-based 

representations supports the development of targeted, cognitively diverse programming questions that 

align with Bloom’s Taxonomy, ensuring assessments measure varying levels of cognitive skills.  

The chapter further discussed template-based approaches and LLMs like GPT-4 and LLaMA-2, 

demonstrating their potential to generate coherent, contextually relevant programming questions 
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while acknowledging challenges such as bias, scalability, and the need for robust evaluation 

frameworks. It highlighted the importance of clear evaluation metrics, including semantic accuracy, 

relevance, and cognitive alignment, to assess the quality of automatically generated questions 

effectively. 

Overall, the chapter established a comprehensive theoretical foundation for the dissertation, 

identifying the limitations of current AQG methods in programming education and underscoring the 

potential of ontology-based and graph-based systems to advance scalable, adaptive, and 

pedagogically sound assessment frameworks in programming learning environments.. 
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Chapter 3 Ontology-Based Automatic Generation of Learning Materials for Python Programming

3.1 Introduction 

Recently, knowledge graphs (KGs), as structured forms of knowledge representation, have gained 

substantial research interests across academia and industry from modern ontology views. Integrating 

educational technologies with KGs has an impressive influence on teaching and learning activities, 

especially in programming with Python. E-learning platforms provide students with tools to easily 

engage and receive ongoing feedback during the e-learning sessions [8]. 

KGs are crucial in optimizing the automation of ontology-based learning material generation. They 

support the organization, interrelation, and knowledge utilization in a particular field [89]. In Python 

programming, KGs can delineate the existing knowledge, relations, and entities [89]. Additionally, 

ontology-driven systems support more effective comprehension of the context and relations of 

various concepts, thus enabling more precise and thorough learning materials generation [89]. Adding 

KGs to the ontology-based automatic generation of educational materials improves content relevance, 

personalization, interoperability, content reuse, and efficient knowledge capture [90]. KGs can 

efficiently organize and manage the structural knowledge of Python programming [90]. 

In the information age, one's programming capability is required in many professions, as accentuated 

by the availability of resources aimed at teaching and training in programming [3]. Designing high-

quality learning materials for programming languages is difficult and requires substantial resources 

because of fragmentation in educational programming design, instructional programming expertise, 

and difficulty in adaptive personalization [5]. Ontology-based automatic learning materials 

generation (ALMG) leverages advanced educational technologies to streamline this process [12]. 

This technology will assist educators in saving time and costs by generating particular and appealing 

materials for students [12]. Calmon et al. [15] describe an automated curriculum selection system that 

tailors educational content to student needs using machine learning and data analytics, improving 

learning effectiveness and institutional delivery. Similarly, Xia et al. [21] propose adaptive networked 

learning material delivery, demonstrating how machine learning can manage learning processes and 

enhance student outcomes in networking education. 

One of the methods to represent domain models is through ontology-based representation [P13]. 

Semantic understanding and knowledge representation enable ontology-based automatic learning 

materials generation for Python programming that produces resources like tutorials, code examples, 

exercises, and assessments. The development of an ontology for capturing Python programming 

concepts, relationships, and properties is used in this approach. It attempts to create learning materials 

based on the pedagogical requirements and learning objectives. The ontology-based approach further 

enables continuously updating and refining the learning materials to sync with Python programming 

environment changes [91]. Ontology-based automatic learning materials generation for Python 

programming is a highly efficient and scalable approach using structured knowledge presentation for 

automating educational content creation [5]. With this method, its learning materials remain 

consistent, high quality, and personalized, all while allowing for the efficient creation of various 

resources. Likewise, the existence of the ontologies makes the routines adaptable to changes in 

Python programming [92], i.e., updating the ontologies and automatically regenerating learning 

materials. Ontologies' automation saves educators and content creators time and effort and improves 

a deep semantic understanding of the Python programming domain for a better generation of learning 

materials [7]. 

Manual creation of Python programming learning materials remains time-consuming and often fails 

to keep pace with the ecosystem’s rapid evolution [P3]. An ontology-driven automated approach can 
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address these challenges, improving learners’ access to high-quality, adaptive, and contextually 

relevant resources.  

The automatic generation of Python learning materials is critical for ensuring scalability, adaptability, 

consistency, and accessibility while facilitating innovation in educational technology and 

programming pedagogy [22]. It enables diverse, personalized learning experiences aligned with 

learners’ needs and learning styles, supporting educational quality while reducing instructor 

workload. 

This chapter aims to develop a comprehensive ontology for Python programming and design an 

ontology-based ALMG system tailored to Python education. It outlines the system’s design and 

implementation while exploring potential enhancements and the implications of such a system in 

educational contexts. 

This chapter details the technologies and methodologies underlying ontology-based ALMG, 

emphasizing how ontologies capture domain knowledge and facilitate the automated generation of 

educational content. It discusses the educational and practical implications of ontology-based ALMG, 

illustrating its potential to enhance Python programming instruction. The objectives of this chapter 

are to: 

1. Design an ontology-based framework that models Python programming concepts and their 

interconnections. 

2. Develop a system for automatically generating Python programming learning materials 

(specifically quizzes) that align with the modeled concepts and relationships.  

The structure of this chapter is as follows: Section 3.2 describes the methodology, outlining the 

ontology-based approach, domain-specific knowledge modeling, and implementation details, 

including validation and evaluation of the proposed model. Sections 3.3 and 3.4 present the results 

and discussion, respectively, while Section 3.5 concludes the chapter, highlighting practical 

implications. A brief summary follows at the end. 

3.2 Methodology 

3.2.1 Ontology-Based Approach for Learning Materials Generation 

Formal knowledge representation is used in an ontology-based approach that captures domain-

specific concepts, relations, and properties and uses such information to generate learning materials. 

The method involves an ontology for the target domain's concepts, relationships, and properties, such 

as programming languages. Semantic understanding is captured through ontology, meaning it results 

in inferring relationships and categorizing concepts. Learners' needs and preferences are analyzed 

based on educational objectives and learner profiles. The ontology is used to generate content that is 

coherent and contextually relevant. The materials are presented using natural language processing 

techniques to make the explanation as clear and understandable as possible. Because it is based on 

ontology, it allows for continuous updating and refinement as the domain knowledge changes. The 

benefits include scalability, adaptability, personalization, consistency, efficiency, and accessibility. 

The ontology-based approach can create adaptive, personalized, high-quality educational content for 

various domains, such as programming education. 

The ontology-based approach for generating learning materials involves structured knowledge 

representations on a domain to automatically create the learning materials. Ontologies are leveraged 

in this process to map the relationships between different concepts in the subject of a knowledge 

domain, providing generated materials that are pedagogically sound and contextually relevant. The 
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primary process of generating learning materials using an ontology-based approach can be 

demonstrated in several steps as follows: 

1. Ontology development, which includes domain analysis, is to identify the key concepts, 

relationships, and rules within the subject area, and ontology construction to define the concepts 

(classes), properties (relationships), and instances (individuals) within the domain, and validation and 

refinement ensure that the ontology accurately represents the domain knowledge through validation 

and iterative refinement. 

2. Knowledge representation involves formalizing the ontology. This formal language provides 

precise semantics for the concepts and relationships, axioms, and rules to define axioms and inference 

rules to capture the logical constraints and derivations within the domain. 

3. Learning materials generation, which contains the content extraction for identifying relevant 

content from the ontology based on the learning objectives, content structuring to organize the 

extracted content into a coherent structure, following educational best practices (e.g., Bloom's 

taxonomy), and template application to apply predefined templates to format the content into various 

types of learning materials (e.g., textbooks, task assessments, interactive modules). 

4. Automated generation algorithms include the input processing to accept inputs such as learning 

objectives, target audience, and preferred content format; ontology querying, which uses description 

logic (DL) queries to retrieve relevant concepts, relationships, and instances from the ontology, 

material assembly to assemble the retrieved information into structured learning materials using the 

defined templates, and output generation for producing the final learning materials in the desired 

format (e.g., HTML, e-learning platform). 

Automatically generating learning materials involves a complex pipeline integrating NLP, machine 

learning, and educational technology. The following is an algorithmic approach to automatically 

generating learning materials from an ontology. Automatically generating learning materials in the 

programming domain involves several tailored steps. The following is a proposed general algorithm 

for automatic learning material generation in the programming domain: 

Inputs: 

• Programming Language: The specific language (Python). 

• Learning Objectives: Skills or concepts to be covered (e.g., syntax, data structures, algorithms). 

• Content Sources: Online tutorials, documentation, code repositories. 

• Format Preferences: Code snippets, quizzes, text explanation. 

• Target Audience: Beginner, intermediate, or advanced learners. 

Steps: 

1. Content Retrieval: 

• Query content sources using APIs or web scraping to gather relevant programming resources. 

• Use NLP techniques to filter and categorize content based on relevance and complexity. 

2. Content Analysis: 

• Analyze the retrieved content for key programming concepts, syntax rules, common pitfalls, and 

best practices. 

• Identify gaps in the content that need to be addressed to fulfill the learning objectives. 

3. Content Structuring: 
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• Organize the content into a logical flow, such as: 

• Introduction to the language 

• Basic syntax and constructs 

• Control structures (loops, conditionals) 

• Data structures (arrays, lists, dictionaries) 

• Functions and modules 

• Advanced topics (e.g., OOP, frameworks) 

• Create outlines or flowcharts to visualize the structure. 

4. Material Creation: 

• Generate text explanations for each section using NLP techniques. 

• Create code examples and snippets that illustrate each concept. 

• Develop quizzes or coding challenges based on the key concepts identified. 

• Design multimedia elements (like screencasts or infographics) if applicable. 

5. Customization: 

• Tailor the generated materials to fit the target audience's skill level. 

• Adjust complexity by simplifying explanations or introducing advanced topics as needed. 

6. Interactive Elements: 

• Integrate coding environments (like Jupyter Notebooks or online IDEs) where learners can practice 

coding directly within the material. 

• Include live coding demonstrations or interactive simulations. 

7. Feedback Loop: 

• Incorporate user feedback mechanisms (like quizzes and surveys) to evaluate understanding and 

engagement. 

• Use machine learning to refine content generation based on user performance data. 

8. Output Generation: 

• Compile all materials into a cohesive format (e.g., HTML pages, PDF documents, online course 

modules). 

• Ensure accessibility standards are met (e.g., code readability, alt text for images). 

9. Review and Iteration: 

• Implement a review process where educators or experienced programmers can evaluate the 

generated materials. 

• Iterate on the content based on feedback and updates in programming language features or best 

practices. 

Outputs: 

• Comprehensive learning materials tailored to programming topics and audiences. 

• Code snippets and examples for hands-on practice. 
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• Quizzes and coding challenges to reinforce learning. 

Considerations: 

• Ethics and Copyright: Ensure all content respects copyright laws and ethical guidelines. 

• Diversity and Inclusion: Include diverse perspectives and examples in the programming context. 

• Technology Integration: Consider integrating learning management systems (LMS) or coding 

platforms for easy distribution and tracking. 

Example Use Case: 

1. Input: 

• Programming Language: "Python" 

• Learning Objectives: Understand basic syntax, functions, and data structures. 

• Format Preferences: Text explanations, code examples, quizzes. 

• Target Audience: Beginners. 

2. Output: 

• A structured document explaining Python basics with annotated code snippets. 

• A set of quizzes covering key points about Python syntax and functions. 

• Links to interactive coding environments for practice. 

Algorithm 3.1 automatically generates multiple-choice quizzes (MCQs) aligned with Python 

programming concepts using a domain-specific ontology. It aims to deliver personalized, adaptive, 

and contextually accurate assessments while ensuring semantic alignment with reference materials 

through BERT-based similarity checks (implemented and deployed on a Flask App). The process 

begins by building a domain ontology for Python programming. This ontology formalizes concepts 

such as data types, control structures, functions, and OOP, capturing relationships and properties 

necessary for the semantic structuring of learning materials. For each domain concept template, the 

system uses a template-based generation approach to create relevant MCQs, systematically 

organizing these questions into a structured MCQ bank. This bank is then saved in a CSV format for 

efficient retrieval and further processing. When a learner requests a quiz, the system loads the MCQ 

dataset, filters questions based on the desired difficulty level, randomly selects the required number 

of questions, computes semantic similarity using BERT embeddings to compare the learner’s domain 

with reference materials, ensuring that the questions are contextually aligned and relevant, and returns 

the personalized quiz alongside similarity metrics for evaluation and adaptive learning path 

refinement. This approach enables scalable, automated generation of high-quality, semantically 

accurate quizzes in programming education, reducing manual effort while enhancing learning 

personalization and alignment with learning objectives. 

3.2.2 Proposed Knowledge Model for The Domain-Specific Concepts 

The domain-specific concept is the system's knowledge module, organizing the domain knowledge 

structure, including its central concepts and their relationships. This model facilitates the automatic 

generation of learning materials for the educational process. It focuses on constructing and organizing 

domain-specific concepts and their interrelations [20]. A knowledge module consists of guidelines to 

identify all vocabulary concepts to illustrate or solve problems. It is purely declarative and does not 

provide instructions on how learners can utilize it to address practical issues [93].  
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Algorithm 3.1: Ontology-Based MCQ Generation 

Input: Domain, Difficulty, Number_of_Questions 

Output: Random_MCQ_Quiz, Similarity_Score 

1:  PROCEDURE BUILD_PYTHON_ONTOLOGY() 

2:      ontology ← ONTOLOGY_STRUCTURE()    

3:      RETURN ontology 

4:  END PROCEDURE 

5:  PROCEDURE GENERATE_MCQ_DATASET() 

6:      mcq_bank ← ∅ 

7:      for each domain_template do 

8:          questions ← TEMPLATE_BASED_GENERATION(domain_template) 

9:          mcq_bank.ADD(domain, questions) 

10:     end for 

11:     SAVE_TO_CSV(mcq_bank, "mcq_dataset.csv") 

12: END PROCEDURE 

13: PROCEDURE SERVE_QUIZ(domain, difficulty, num_questions) 

14:     questions ← LOAD_FROM_CSV("mcq_dataset.csv") 

15:     filtered ← FILTER_BY_DIFFICULTY(questions[domain], difficulty) 

16:     selected ← RANDOM_SAMPLE(filtered, num_questions) 

17:     similarity ← BERT_SIMILARITY(ontology_material[domain], domain) 

18:     RETURN FLASK_RESPONSE(selected, similarity) 

19: END PROCEDURE 

 

 

 

Two categories of ontology modules have been developed based on the characteristics of the learning 

materials: general domain-specific concepts ontology and specific domain-specific concepts 

knowledge module ontology. These modules represent the knowledge concepts needed for learning, 

provide input to the knowledge module, offer particular feedback, select problems, create learning 

materials, and support the student model. A domain-specific concepts knowledge module has been 

proposed based on current research, as illustrated in Figure 3.1. This model is fundamentally based 

on domain concepts, properties, task assessments, material resources, learning objectives, learning 

rules, learning levels, and their interrelationships. To generate learning materials and reuse the 

knowledge module in the learning process, ontologies organize and represent the domain-specific 

concepts in the knowledge module. The advantage of this model is its ability to personalize and 

automatically generate learning materials for learners. Based on the general domain-specific concepts 

ontology shown in Figure 3.1, domain concepts, domain properties, task assessments, material 

resources, learning objectives, learning rules, and learning levels terminologies refer to the following: 

• Domain concepts present domain-specific knowledge or a comprehensive learning material or 

course overview. 

• Domain properties represent learning material or domain-specific properties within a domain 

knowledge model. 

• Task assessments explain how the application system can assess or measure the required learner 

activities within a specific period. 
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• Material resources are physical or digital items used in educational settings to support and facilitate 

learning. They include textbooks, web resources, software, multimedia tools, and laboratory 

equipment.  

• Learning objectives are clear, measurable goals that outline students' expected learning outcomes. 

They guide teachers in planning instruction, designing assessments, and evaluating progress. Aligned 

with curriculum and instructional standards, they provide a framework for effective teaching and 

assessment.  

• Learning rules are principles or guidelines that describe how learning occurs and how new 

information is acquired and processed. These rules help educators understand student learning and 

inform instructional strategies while helping students become more effective learners by optimizing 

their learning processes. 

• Learning levels are the stages of proficiency and understanding that individuals progress through as 

they acquire new knowledge, skills, and competencies. They are crucial in education and instructional 

design, as they help educators tailor teaching methods and materials to support students at different 

stages of their learning journey. 

Figure 3.2 displays the design and structure of a selected ontology knowledge module for the domain-

specific concepts case study for the Python programming domain. Several relationships are applied 

to the domain-specific concepts selected in case examples. The relationships are generalization or 

specialization, dependency, and containment. Containment indicates that a specific domain concept 

within a given domain contains various concepts (has-a). The generalization or specialization shows 

particular topics or domains with specific concepts (is-a). Based on Figure 3.1 and Figure 3.2, the 

following displays a temporary explanation of a domain concept: 

• Domain concepts: Class, Function. 

• Domain properties: syntax. 

• Task assessments: program, code review, project.  

• Material resources: textbooks, web resources. 

 
Figure 3.1 Knowledge model for the domain-specific concepts 

Fig. 1.  
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3.2.3 Proposed Model Implementation 

Computer Science and Information Technology disciplines offer numerous language modules and 

packages for developing and managing ontology models. Python is one of the most widely used and 

favored languages for implementing an ontology for domain-specific concept models. This 

interpreted, object-oriented, and extensible programming language is known for its exceptional clarity 

and versatility across various fields [13]. The paper [P8] used Python and Owlready2 to create the 

ontology and implement the domain knowledge. The domain-specific concept explored in this work 

is the "Basics of Computer Programming." The ontology is constructed using the "Python 

Programming Language." The Python and Owlready2 modules implement domain-specific concepts 

within the ontology. Owlready2 facilitates transparent access to ontologies, allowing for the 

manipulation of classes, individuals, object properties, data properties, annotations, property 

domains, ranges, constrained datatypes, disjoints, and class expressions, including intersections, 

unions, property value restrictions, and more. Python offers some functions and modules for 

managing ontologies to implement, create, and modify ontologies. The get_ontology() function 

allows building an empty ontology from its IRI using the Owlready2 module. Owlready2 uses the 

syntax "with ontology: ..." to demonstrate the ontology that will receive the new RDF triples. For 

creating an ontology, the following short code is used:  

from owlready2 import *  

ontology = get_ontology() 

with ontology: <Python code> 

 

Concerning the implementation of the domain-specific concepts and the construction of its 

components: the domain concepts, learning objectives, domain properties, task assessments, learning 

 
Figure 3.2 Specific knowledge model for the domain-specific concepts 
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rules, material resources, and learning levels. Figure 3.3 shows a code dealing with the design of the 

core classes of the presented model. Figure 3.4 corresponds with some of the object property 

relationships defined for the constructed components of the selected model. Several tools are 

available to display the ontology graph. The tools are Synaptica, OWLGrEd, and Protégé. Protégé is 

the most commonly used tool to display the ontology graph of domain-specific concepts, as shown 

in Figure 3.5. The circular relationship lines in Figure 3.5 mean that each topic can depend on another 

topic and contain subtopics. For example, the iterative loop depends on variables, logical operators, 

and relational operators. Control sentences contain conditional sentences and iterative sentences. 

Figure 3.6 presents a SPARQL query as an example of visualizing all the domain concepts in the 

selected ontology domain-specific concepts regarding retrieving the domain concept and its 

description.  

 

 

 

 

 

 

 
Figure 3.3 Core classes of the presented model 

 

 
Figure 3.4 Object property relationships 
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Natural language processing is used for automatic learning material generation, applying the Spacy 

module in Python and the rdflib module. Figure 3.7 and Figure 3.8 present the code that controls the 

ontology of domain-specific concepts. Figure 3.9 and Figure 3.10 display snapshots of SPARQL for 

generating task assessment and query results according to SPARQL selecting concepts. The results 

are domain concepts, task assessment, and asking questions in the form of multiple-choice questions. 

Regarding automatic learning materials generation, the system randomly generates task assessments 

as multiple-choice questions for the learner. The learner is asked to answer the question, and according 

to the answer, whether it is correct or not, the system will automatically generate learning materials 

for further reading. Figure 3.11 shows a snapshot of a task assessment question, whether the answer is 

correct, and the suggested learning material for the selected task.  

 

 

 
Figure 3.5 Domain-specific concepts ontology graph 

 
 

 
Figure 3.6 A SPARQL query for retrieving the concept "python class" and its description 
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Figure 3.7 Controlling the ontology of domain-specific concepts 

 
 

 
Figure 3.8 The result of the ontology of domain-specific concepts 

 

 
Figure 3.9 Task assessment generation 

 

 
Figure 3.10 Task assessment and result sample 
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Figure 3.12 shows a potential system that uses an ontology-based method to generate adaptive learning 

materials and quizzes. It illustrates how an ontology of concepts and relationships guides the 

development of personalized quizzes and learning paths suited to different competence levels. At the 

same time, learner progress informs knowledge gap analysis and topic selection. The Python 

programming ontology is a hierarchical system that maps out Python concepts, relationships, and 

learner progression. It includes fundamental concepts like variables, data types, and functions. The 

system infers a learner's proficiency level based on how they perform in quizzes and assessments. The 

ontology can be modified dynamically with performance-related data. In addition, it provides data 

analytics on tracker progress, predictive analytics, and content optimization. The ontology-based quiz 

creation process is dynamic and automatic, using Python concepts and learning objectives. It integrates 

with the learning path generator that selects the questions depending on the learner's progress. The 

system can accommodate questions such as multiple choice, true/false, fill-in blanks, code snippets, 

and coding challenges for promoting knowledge retention and skill development. The traditional way 

of producing materials and questions is to establish the scope and topic sets, acquire information and 

resources, structure the content, build learning materials, build assessment questions, and create 

specific examples. The instructor could use book texts, online resources, or even their teaching notes 

to extensively deal with functions, parameters, return values, and scope. The content is divided into an 

introduction to the function, a function definition, parameters and arguments, return value, and 

function scope. Text-based learning materials, code-based learning materials, visuals, and exercises 

exist. Assessment questions can be multiple choice, code analysis, or code writing. Table 3.1 shows a 

comparison between traditional vs. ontology-based learning material creation. Examples include 

defining functions using the `return` statement and questioning about parameters in a function. This 

approach emphasizes the reliance on the instructor's knowledge and the step-by-step process of 

translating that knowledge into learning resources. The following is a case study considering the 

following code: 

def add_numbers(x, y): 

      result = x + y 

      return result 

sum = add_numbers(5, 3)  

print(sum) 

What is the purpose of parameters in a function? 

(a) To give the function a name. 

(b) To allow the function to accept input values. 

(c) To specify the data type of the return value. 

(d) To control the order in which code is executed. 

 
Figure 3.11 MCQs task assessment 
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Table 3.1 Comparison between the traditional approaches and ontology-based approaches 

 

Feature Traditional Learning Material Creation 
Ontology-Based Learning Material 

Creation 

Content 

Organization 
Linear and structured manually 

Hierarchical and dynamically structured 

using ontology 

Customization Limited personalization Highly personalized based on learners' needs 

Content Reusability Low content created from scratch 
High, modular content reuse across different 

topics 

Automation Mostly manual work AI-assisted generation and annotation 

Content Consistency It can be inconsistent across materials Ensures uniform structure and terminology 

Adaptability Hard to update and adapt 
Easily adaptable to new knowledge and 

learning trends 

Efficiency Time-consuming Faster and more efficient due to automation 

Interactivity Mostly static content 
Dynamic and interactive learning 

experiences 

Scalability Difficult to scale 
Easily scalable across different subjects and 

learners 

 
Figure 3.12 Ontology-based method to generate adaptive learning materials and quizzes 
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3.2.4 Proposed Ontology-Based Model Validation and Evaluation  

For ontology-based model validation and evaluation, various tools can be utilized to ensure the 

ontology's accuracy, consistency, completeness, and pedagogical effectiveness. Using these tools, you 

can comprehensively validate and evaluate ontology-based models to ensure high-quality, effective 

learning materials. A robust continuous improvement framework is based on combining automated 

tools with expert reviews. 

1. Ontology Evaluation: Ontology evaluation tools are essential in assessing ontology quality, 

reliability, and utility in many domains [23]. Ontology quality is measured with several metrics and 

methods, including quality metrics, consistency checkers, structural analysis tools, domain-specific 

evaluation tools, and usability evaluation tools [23]. Moreover, these tools also maintain the integrity 

and usefulness of ontologies across different domains. Automation, usability, interoperability, domain-

specific adaptations, and capabilities for dynamic evaluation can be improved [23]. IRI_Debug is an 

ontology evaluation tool that enables detecting and correcting issues in the Internationalized Resource 

Identifiers (IRIs) [19]. It provides IRI validation, validation of errors, consistency checking, 

namespace control, and an easy-to-use interface [19]. However, it is unsatisfactory due to the 

effectiveness of ontology complexity and IRI usage patterns in ontology development, maintenance, 

and educational use. Continuous updates are necessary for evolving standards [19]. Owlready2 offers 

many reasoners for manipulating the domain ontology, such as Pellet, ELK, and HermiT. The HermiT 

reasoner is used, as shown in Figure 3.13, to check that the constructed ontology is consistent and 

allows the classification, instance checking, class satisfiability, and conjunctive query answering of 

the developed domain ontology for the selected model. It is the most commonly used in ontology 

engineering. 

 2. Ontology Validation: Ontology validation tools ensure ontologies' quality, reliability, and 

usability [94]. They identify issues related to consistency, completeness, correctness, and adherence 

to best practices [94]. Popular tools include OOPS!, OntoQA, OQuaRE, Pellet and Hermit, 

OntoMetric, BioPortal and AgroPortal, and OntoClean. OOPS! is a tool that helps ontology developers 

identify and address common pitfalls in ontology design [95]. It uses a set of pitfalls from best practices 

and expert recommendations, covering naming conventions, ontology structure, and logical 

inconsistencies [95]. The tool generates detailed reports detailing pitfalls, severity, and affected 

elements and provides recommendations for correcting each [95]. It can be integrated into ontology 

environments like Protégé, enhancing usability and promoting best practices [95]. Figure 3.14 shows 

the OntOlogy Pitfall Scanner tool for ontology validation, which is used for the validation process. 

The input values for this tool can be ontology URL or RDF file code. Figure 3.15 shows the OntOlogy 

Pitfall Scanner tool validation results. 

 

 

 

 
Figure 3.13 Consistency of the domain-specific concepts ontology 
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3.3 Results 

The ontology-based automatic generation of learning materials in the Python programming domain as 

a solution provides a more sophisticated system for generating learning materials. Assessing their 

quality accuracy, 98.5%, makes it a valuable tool in educational technology and content generation. 

The dataset used in this experiment is the Python programming language ontology [96]. To generate 

the learning materials, BERT embeddings have been used to measure the semantic similarity of 

generated learning materials to predefined reference materials. It also generates an evaluation table, 

Table 3.2, summarizing the results for each domain concept, as explained in the following steps: 

 
Figure 3.14 OntOlogy pitfall scanner tool 

 

 
Figure 3.15 OntOlogy pitfall scanner tool results 
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1. Ontology and Learning Materials: An ontology is defined for various domain concepts (e.g., Python 

Programming, Data Structures), and learning materials are generated for each domain concept using 

predefined content. 

2. BERT-based Accuracy Calculation: BERT model from the sentence-transformers library is used to 

compute embeddings for the generated learning materials and predefined reference materials. We then 

calculate the cosine similarity between these embeddings to determine the semantic accuracy of the 

generated content. 

3. MCQ Generation: MCQs are generated for each domain concept and assess how much the learner 

understands it. 

4. Evaluation Table: Table 3.2 shows how the create_evaluation_table function collected generated 

learning materials, accuracy scores, MCQs, and a brief description of results from the results set into 

a structured evaluation table with the help of pandas. Descriptions of the accuracy are offered as a 

categorical measure based upon the thresholds, "Excellent alignment" being the case when the 

accuracy is greater than 90%, "Good alignment" for anything from 70% to 90%, and "Moderate 

alignment" for a value that is less than 70%. 

Table 3.3 compares the ontology-based model's performance across numerous samples of the Python 

programming topic Data Types, Control Flow, Functions, Error Handling, and OOP (Object-Oriented 

Programming), respectively. It shows how effectively the system can generate learning materials and 

assessments for each topic. As shown in Table 3.4, the ontology-based model's performance also 

changes according to the dataset size when presented with the task of generating Python programming 

learning materials. It shows accuracy and other improvements as the model processes more datasets 

and proves its scalability. Using the following formulas, the evaluation metrics such as accuracy, 

precision, recall, and F1 Score are calculated by the formulas from 3.1 to 3.4. 

 

Accuracy =  (True Positives +  True Negatives) / (Total Instances) (3.1) 

Precision =  True Positives / (True Positives +  False Positives) (3.2) 

Recall =  True Positives / (True Positives +  False Negatives) (3.3) 

F1_Score =  2 ∗  (Precision ∗  Recall) / (Precision +  Recall) (3.4) 

 

Data is split into training (80%) and testing (20%) sets using the train_test_split function from 

sklearn.model_selection. The final parameter is the split with test_size=0.2, and random_state=42 

ensures reproducibility. Using dataset size, the training and testing percentages are calculated. The 

values for these datasets are explicitly defined and printed in the run_evaluation function to make it 

clear for model training and evaluating the dataset distribution. In this case, the accuracy calculation 

was measured using the BERT-based semantic similarity. A pre-trained BERT model was used to 

transform the generated and reference texts into vector embeddings. These embeddings were computed 

into cosine similarity values measuring their semantic closeness. A predefined threshold was set to 

verify if the generated content was accurate (e.g., 0.8 or 0.9). The accuracy was calculated as the 

percentage of correctly matched samples over the total number of samples.  
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Table 3.2 Evaluation table sample 

Domain 

Concept 
Generated Learning Material 

Accuracy 

Score 

(%) 

MCQs Description 

Python 

Programming 

Python is a versatile programming language 

known for its simplicity and readability. It 

supports multiple programming paradigms, 

including procedural, object-oriented, and 

functional programming. 

98.50% 

Q: What keyword is 

used to define a 

function in Python? 

- def - function - func - 

define Answer: def 

Excellent 

alignment with 

reference 

material. 

Data 

Structures 

Common data structures in Python include 

lists, dictionaries, sets, and tuples. Each 

structure has unique properties and use 

cases. 

95.85% 

Q: Which of the 

following is an 

unordered collection in 

Python? 

- List - Tuple - 

Dictionary - String 

Answer: Dictionary 

Excellent 

alignment with 

reference 

material. 

Algorithms 

Algorithms are step-by-step procedures for 

solving problems. In Python, you can 

implement algorithms for sorting, 

searching, and manipulating data in Python. 

92.30% 

Q: What is the time 

complexity of binary 

search? \n - O(n) \n - 

O(log n) \n - O(n log 

n) 

Answer: O(log n) 

Excellent 

alignment with 

reference 

material. 

 

Table 3.3 Ontology-based model evaluation: Python programming topics sample 

Python Topic 
Number of 

examples 
Percentage Accuracy Precision Recall 

F1-

Score 

Data Types (int, float, str) 390 39% 0.95 0.93 0.96 0.94 

Control Flow (if, else, loops) 170 17% 0.91 0.89 0.92 0.90 

Functions (def, arguments, return) 70 7% 0.93 0.91 0.94 0.92 

Error Handling (try, except) 70 7% 0.89 0.86 0.91 0.88 

Object-Oriented Programming (OOP) 360 36% 0.90 0.87 0.92 0.89 

 

Table 3.4 Ontology-based model evaluation performance by dataset size 

Dataset Size (Records) Accuracy Precision Recall F1-Score 

Small (500) 0.88 0.85 0.89 0.87 

Medium (1500) 0.91 0.89 0.92 0.90 

Large (5000) 0.985 0.92 0.95 0.93 
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Finally, the proposed system was deployed using Flask App, as shown in Figure 3.16. The final 

ontology-driven dataset contained 5,000 structured quiz examples. Each Example consists of a 

question, four options to choose from as an answer, and the correct answer. This study implements an 

ontology-driven quiz generation system that leverages structured knowledge representation to enhance 

Python programming education. By systematically aligning quiz content with formal ontological 

structures, the system introduces adaptive difficulty mapping and semantic similarity evaluation, 

ensuring learners engage with contextually relevant and appropriately challenging material. This 

principled approach differentiates itself from generic quiz generators by providing a structured 

framework that supports meaningful assessment while maintaining domain specificity. The semantic 

analysis components refine content alignment and facilitate the generation of quizzes that dynamically 

reflect the learner’s evolving understanding. As part of its future trajectory, the system is designed to 

incorporate advanced natural language processing (NLP) techniques to enhance semantic alignment 

and question generation quality, thereby positioning this work at the intersection of structured 

knowledge representation and adaptive educational technology within the context of programming 

education. 

 

3.4 Discussion 

Ontology-based automatic generation of learning material is a technology that can potentially enhance 

learning experiences in almost any educational environment. From an instructor's point of view, it 

operates as an adaptive tool that can initiate customized tests based on the students' diagnostic results. 

In this way, it enables the emergence of personalized learning materials directed to certain weak spots 

and saves quiz creation and grading time.  

This tech can provide a personalized learning path for learners, particularly Python programming 

students. An independent learner might start with a diagnostic test that covers basic topics such as data 

types, control flow, and functions. It can create debug tasks, discussions, and interactive lessons 

personalized to the student's needs based on their performance. It can also generate automatic feedback 

to highlight task errors, syntax errors, and possible solutions for student advancement. The instructor 

can use the same feedback to identify challenges faced by students and correspondingly grade the 

difficulty level of exercises so that support may be made more specific.  

This technology is excellent for use in both self-paced and instructor-led learning environments. In a 

blended learning model, for example, a self-paced learner could work through the function modules, 

and an instructor could give the diagnostic quizzes to track progress. Real-time performance tracking 

enables educators to identify learning gaps and intervene effectively. Advanced learners can also use 

the system to focus on specialized topics, such as data manipulation using Pandas, with automatically 

generated complex coding tasks to support skill advancement. 

 
Figure 3.16 Python MCQ quiz generator flask app 
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Overall, the ontology-based approach allows instructors to align learning materials with specific 

learning objectives, ensuring learners receive contextually relevant, personalized content that enhances 

engagement and retention while improving instructional efficiency. 

3.5 Conclusion  

In the digital age, programming skills have become a requisite for practice in almost every professional 

sphere, increasing the need for the most effective learning materials in programming study and 

training. Generating educational resources of computer programming based on ontology is a promising 

way to improve the quality and efficiency of educational resources of computer programming.  

This chapter developed and implemented an ontology-based framework to model Python 

programming concepts and their relationships, enabling the automatic generation of quizzes and 

learning materials aligned with these structures. Using BERT-based semantic similarity evaluations, 

the system achieved a high accuracy rate of 98.5%, validating its effectiveness in producing relevant, 

accurate, and pedagogically coherent content. 

The novelty of this approach lies in its integration of structured ontological modeling with automated 

quiz generation, ensuring adaptive difficulty, semantic relevance, and alignment with instructional 

objectives in Python programming education.  

Despite its contributions, this study acknowledges limitations. First, it primarily focused on Python 

programming, which may limit the generalizability of findings. Second, it requires further testing 

through controlled trials comparing ontology-based learning materials with traditional resources to 

evaluate impacts on retention, engagement, and mastery.  

Future research should expand the system to support multi-language programming education, assess 

its effectiveness through controlled experiments, and integrate adaptive feedback mechanisms and 

advanced NLP to further enhance question generation quality. 

3.6 Summary  

Learning materials are essential for effective instruction in programming education. This chapter 

introduces an ontology-based approach for automatically generating learning materials for Python 

programming. The method harnesses ontologies to capture domain knowledge and semantic 

relationships, enabling the creation of personalized, adaptive content. The ontology serves as a 

knowledge base to identify key concepts and resources and map them to learning objectives aligned 

with user preferences.  

The chapter outlines the design of a dual-module ontology: a general and a specific domain-specific 

concepts module. This design supports enhanced, tailored learning experiences, enhancing Python 

education by meeting individual needs and learning styles. The approach also increases the quality and 

uniformity of generated content, which can be reused for educational reasons. The system ensures 

alignment with reference materials by using BERT embeddings for a semantic similarity measurement, 

achieving a quality accuracy of 98.5%. It can be applied to improve Python education by providing 

personalized recommendations, hints, and problem-solution generation.  

Future work will expand this system to support multi-language AQG (Automatic Question 

Generation), personalized hint generation, and advanced feedback loops, further enhancing 

programming instruction in scalable and adaptive learning environments. 

 

Thesis 1: An ontology-based system was developed to automatically generate programming-related 

assessment questions directly from source code. The system enables semantic interpretation of 

programming constructs using structured domain knowledge, supporting concept-aware question 

generation without relying on adaptive learning mechanisms. [P1, P2] 
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Chapter 4 A Hybrid Approach for Automatic Question Generation from Program Codes 

4.1 Introduction 

Automating question generation has become significant with the increasing trend of online learning 

and its scalability in recent years. Technical courses like learning programming languages are more 

popular, and there is a massive demand for such subjects. Questions are the primary approach used to 

evaluate student knowledge [97]. Therefore, creating questions becomes more challenging as the 

constant growth of e-learning continues, more courses are made, and the pressure on teachers is high. 

Intelligent and deliberate questions can enhance student understanding and reduce the gap between 

theory and practice in programming subjects [98]. For example, the article [99] monitors the 

performance and behavior of students who engage in courses with self-assessment methods in 

programming and problem-solving. The research in [100] observes the decentralized practice by 

monitoring the intensity and timing of the impact on student learning and problem-solving in 

programming languages. The research paper [101] addresses interactivity while solving problems in 

programming languages based on learning objects. The article [102] tries to enhance the use of digital 

resources for students and instructors. The research papers [103] and [104] address the learning objects 

that can be used in different contexts using Web3. Finally, the article [105] suggests collaborative 

learning to help instructors engage students in generating and evaluating questions. The proposed 

method in this chapter focuses on translating Python code into text and uses an AI-based framework 

to generate questions from the text. We also use ontology to connect and conceptualize the logic of 

the programming language. Applying ontology ensures interoperability with other systems and 

reduces the overhead on educational platforms. This chapter contributes to e-learning platforms and 

improves the overall experience of programming language instructors. It also enhances the learning 

path for students who like to learn and do exercises without repeating the same questions. The outcome 

of this research is to generate meaningful questions based on Python code to assist instructors in 

creating more questions in a timely manner, thus ensuring student proper learning of the potential 

programming language. Unlike similar works, most recent research focuses on generating questions 

from text, while some research focuses on generating questions from visuals or images [106].  

This chapter focuses on generating questions from code snippets using semantic relations to extract 

the concepts. Generating questions from unconventional sources, such as code snippets, becomes 

important in providing a better learning experience to large groups of students, especially when dealing 

with limited information. The main goal of this chapter is to assist instructors and students in properly 

evaluating student performance by generating Python-based programming questions from existing 

materials (i.e., code snippets). The automatic question generation from code snippets will add the 

possibility of generating a different set of questions based on the same code snippet. Therefore, it 

leads to a better understanding of the given topic. The research objectives of this chapter are to 

implement a framework that can interpret Python programming language into text, and enable the 

framework to comprehend the text and build connections between the programming structures and 

the semantic concepts. 

The chapter is structured as follows: Section 4.2 details the methodology and framework. Sections 

4.3 and 4.4 present results and discussion, respectively. Section 4.5 concludes the chapter. A brief 

summary is provided at the end.  

4.2 Methodology 

Question generation involves computer understanding of the available materials to propose plausible 

questions to students. However, two approaches are usually effective: AI-based or semantic-based. 

The current work uses a combination of semantic and AI methods to properly generate questions from 

code snippets based on semantic code conversion. The primary motivation for using the semantic 

approach is maintaining concept relations in the programming language keywords to increase system 

intelligence on the programming language rules. Other approaches would not accurately represent the 
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programming language rules, keywords, and concepts. This section will detail the question generation 

framework architecture, the technology used, and the approach to generating questions.  

4.2.1 Architecture 

To generate questions from existing Python code snippets, an interpreter is needed to translate the 

code into more understandable concepts. Python or any other programming language is constructed 

using operators, variables, and functions. Operators such as +,-,AND usually do the actual computing. 

At the same time, variables are used to store values and recall them with operators to perform specific 

tasks. Functions contain a list of variables, loops, and operators to be executed in order. The ontology 

will categorize and conceptualize the list of commands (i.e., variables, operators, etc.) and the 

relationships between the concepts in the script. It will build an explained version of the code by 

processing the code line by line and creating semantic relationships based on the input. Subsequently, 

the translated code is generated and inserted into an AI question generator called “QuestGen” [107]. 

This model will generate open-ended questions. Figure 4.1 shows the framework data flow and its 

components. Awareness of existing technologies and software is essential to construct any framework 

or software. Such awareness can improve productivity and help address many issues that take a long 

time. As a result, we implemented a framework using various third-party software in this chapter. 

Table 4.1 describes this case's environment settings, tools, and applied libraries. The QuestGen AI 

model, an open-source natural language processing (NLP) library dedicated to creating simple 

question-generation methods, has been used. It is on a mission to become the world's most 

sophisticated question-generation AI by utilizing cutting-edge transformer models like T5, BERT, 

and OpenAI GPT-2, among others. The primary objective of QuestGen AI is to simplify the question-

generation process, providing support to educators, content creators, and learners in developing 

educational materials. This tool significantly enhances the efficiency of teaching and learning 

resource development through automation, ultimately facilitating a more effective educational 

experience. 

 

Before generating questions, the QuestGen AI model expects a text as input. The ontology mentioned 

next is responsible for converting the snippet code from the Python programming language into text 

that humans can understand. Subsequently, this model can generate questions based on the inserted 

text. The software supports four types of questions, and they are as follows: 

• Questions with Several Choices (MCQs) 

• Boolean (Yes/No) Questions 

• Open-ended Questions 

 
Figure 4.1 Proposed framework architecture 
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• Question Paraphrase 

The current study considers Boolean, short, and open-ended questions. Since learning a programming 

language focuses on understanding the content of a code, such questions are more suitable for 

assessing student knowledge properly. 

 

Table 4.1 Environment settings, tools, and applied libraries 

Name Description 

OwlReady2 Python library to implement Ontology V 0.37 

Protege Software Application for viewing and modifying ontology 

Jupyter Notebook IDE to develop the framework 

QuestGen AI-based application to generate questions from the text  

Python  V 3.11.1 

 

4.2.2 Ontology Design 

The ontology is built and compiled using the OWLReady2 library in Python. Such a library would 

support automating manual activities like adding instances to the ontology. However, the main 

components and the relationships between concepts should be implemented manually to maintain 

logical correctness. Translating code into text starts with assigning keywords to ontology classes and 

describing these keywords. For example, the "=" sign is described in the ontology as an "equal sign", 

a value of the Assignment subclass in the operator class. The output of the ontology implemented in 

Python and OwlReady2 is then imported into Protégé for visualization purposes, since the 

visualization is not yet supported on OwlReady2.  Figure 4.2 shows the visualization of the ontology 

design in Protégé. 

 

 
Figure 4.2 Ontology design visualization using protégé 
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Logical correctness would enforce semantic meaning on the written script. For example, an “elif” 

statement syntax is valid in Python. However, it cannot exist without having an “if” statement before 

it. An “elif” should only come after an “if”. Furthermore, logical correctness would connect all the 

keywords and describe the semantic relationship between steps. Most essential aspects of the Python 

programming language in the designed ontology are classified as classes and subclasses. For example, 

in this study, the Python language elements and constructs have been categorized into four main 

classes: Control Structure, Function, Library, and Operator. Each subclass of the Operator class 

contains several instances that would map each instance to the operator class. Such mapping would 

assist in enforcing the logical correctness of the translated snippet. Figure 4.3 shows an instance 

definition from the constructed ontology. The ontology's capabilities aim to structure the Python 

programming language to ensure that the computer can collect vocabulary text about the keywords 

and build sentences based on the combination of the programming language keywords, which can be 

fed later into the question generation model. The main limitation is that the ontology should be built 

manually by adding the explanation of all instances, which can be challenging to implement. Further 

research is needed to improve this approach. 

 

4.2.3 Parser 

The parser's job is to detach a block of code into pieces that can match the ontology based on 

keywords and custom conditions. These conditions are adjusted depending on the inserted snippets. 

This model uses the ontology to create sentences. It analyzes keywords in the parser and generates 

sentences explaining the code. For example, a=10, the parser would create “a is a variable. a value is 

10”. This parser helps turn Python code (and maybe other types later) into sentences using a set of 

rules. It maintains whatever logic the ontology possesses about the code. Then, it is fed into the AI 

model to generate proper questions based on the code interpretation by the ontology. Finally, the 

'explained code' is passed to the QuestionGenAI framework to generate questions. 

4.2.4 Question Generation 

Over time, there is a growing demand for question generation, a trend that could significantly alleviate 

the burden on educators and trainers.  This is particularly beneficial for scalable learning formats such 

as online courses. Many models exist for generating questions from regular text; however, 

understanding code and generating questions from code snippets is not applied due to its complexity. 

Code-to-text conversion is a challenging task. However, the semantic relationships between the 

concepts in the ontology are an excellent solution. Figure 4.4 shows the whole procedure for 

translating code into text. In Figure 4.4, the code undergoes validation by a parser checker responsible 

for scrutinizing its syntax. Once the code is confirmed as error-free, the checker directs it to the 

ontological translator, acting as the parser within our architecture. This parser transforms the code 

 
Figure 4.3 Instance definition of Subtraction 
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into coherent sentences, forwarding them to the Question Generator AI model to generate reasonable 

questions. An explanation of the Question Generator AI model is provided in the subsequent section. 

4.2.5 QuestionGen AI 

The QuestGen AI model is an AI model that can generate questions using AI. The QuestGen project 

is available in an open-source format [18]. The model is already trained and can generate high-quality 

questions based on text fed into the model. Instructors can choose the type of question that can be 

generated; however, Boolean, short, and open-ended questions have only been applied for this study. 

The results summarized in the subsequent section show that the AI model can generate reasonable 

questions based on the input text and its level of clarity.  

• Input: The model can process various types of input, including structured, unstructured, and 

context-based content such as passages, documents, and articles. 

• Field of application: The model is tailored to support the education field across diverse 

disciplines such as science, history, language arts, and more. However, it does not have the 

capability to execute or generate programming language code. 

• Generation method: It is a semantic-based model designed to comprehend inserted text by 

leveraging concepts and contextual awareness. This procedure is divided into two main steps. 

Firstly, it begins with entity recognition, wherein the model extracts crucial information such 

as dates, names, and relationships, employing part-of-speech tagging. Next, the model applies 

question templates to the extracted information to match the most suitable predefined question 

template. To improve question quality, various methods are employed, including probabilistic 

approaches to refine wording and phrasing within the questions. 

• Question format: The model can propose various formats, including open-ended, multiple 

choice, true/false, and short answer. 

• Response format: The responses are generated in both text and JSON formats. Each type of 

question has its own format. For instance, multiple-choice questions prompt the system to 

produce the question stem and its corresponding answer choices. This distinction applies to all 

question types, and the resulting output is tailored accordingly. 

• Example: The sentence inserted into the model is “In Python, a function is defined using the 

'def' keyword, followed by the function name and parentheses containing any parameters. The 

function body is indented and contains statements that define the function's behavior.”  

• The generated questions for a true/false type of question are: 

o “Is a function in Python defined using the 'def' keyword?”. 

 
Figure 4.4 Question-generation process  
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o “Do parentheses follow the function name in a Python function?”. 

o “Does the function body in Python need to be indented?”. 

4.2.6 Hybrid Question Generation from Program Codes 

Algorithm 4.1 is a hybrid approach employed to automate the generation of programming-related 

questions from Python source code by integrating structural parsing with ontology-based semantic 

enrichment. Initially, source code samples are parsed using Python’s abstract syntax tree (AST) to 

identify constructs such as function definitions, class structures, variable assignments, and control 

flow statements. An ontology is constructed to represent these extracted elements and their semantic 

relationships, capturing contextual information regarding code dependencies and logical flow within 

the program. Using this enriched representation, the system generates diverse question types, 

including multiple-choice, short-answer, and open-ended questions, through either the Questgen 

neural generation model or a heuristic fallback mechanism when computational resources are limited.  

 

 
Algorithm 4.1: Hybrid Approach for Question Generation from Program Codes 

Input: Python source file path P 

Output: Question set Q = {Q_b, Q_s, Q_o} 

Parameters: max_questions, question_type 

1:  O ← BuildOntology()   

2:  C ← ReadFile(P) 

3:  AST ← Parse(C) 

4:  T ← ∅ 

5:  for each node ∈ AST do 

6:      switch node.type do 

7:          case Assignment: 

8:              ind ← Variable(node.target, node.value) 

9:          case FunctionDef: 

10:             ind ← Function(node.name, node.args) 

11:         case ClassDef: 

12:             ind ← Class(node.name, node.bases) 

13:         case Call: 

14:             ind ← Object(node.target, node.func) 

15:         case Import, ControlFlow: 

16:             ind ← CreateIndividual(node) 

17:     end switch 

18:     AddToOntology(O, ind) 

19:     semantic_desc ← QueryOntologyRelations(O, ind)   

20:     T ← T ∪ {semantic_desc} 

21: end for 

22: text ← Concatenate(T) 

23: if QuestGen_Available() then 

24:     Q ← QuestGen_AI_Model(text, max_questions, question_type) 

25: else 

26:     Q ← HeuristicFallback(text, max_questions, question_type) 

27: end if 

28: return Q 

 

4.3 Results 

The results are generated in two versions, one utilizing our proposed model and the other without its 

use (i.e., by directly inserting the code into the QuestGen AI), as depicted in Figure 4.5. The 

implemented framework facilitates the question-generation process, empowering teachers to 

automatically generate Python programming language assessment questions for testing students' 

knowledge. Figure 4.6 depicts a straightforward code snippet featuring variable definitions. This 

figure illustrates specific variables alongside their assigned values, incorporated as a script within the 
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ontology. A Python parser is employed to validate the text as proper code before generating any 

flawed or erroneous questions to mitigate the potential for incorrect syntax within the inserted code. 

Figure 4.7 displays the translated text derived from the code, providing a textual interpretation for 

each line. The interpreter presents the variable type and specifies the assigned value for each variable.   

 

 

 

Figure 4.8 showcases the outcomes resulting from inserting the aforementioned text into the 

QuestGen AI model. Figure 4.9 can be seen without having a context. The question generator failed 

to produce any meaningful questions except for the list variable, where it managed to generate a 

relevant question. However, the AI model could not comprehend all the lines, hence the presence of 

the ZERO {} symbol.  

 

Figure 4.10 exhibits a Python code comprising class and object definitions presented as a string and 

passed through an ontology to translate it into text. Subsequently, this text is fed into the QuestionGen 

model to generate questions. In the subsequent examples, only the generated questions and context 

from QuestGen AI will be showcased, omitting the complete outputs.  

 

 

 

 
Figure 4.5 Generating questions directly from code 

 

 
Figure 4.6 A code snippet with variable definitions 

 

 
Figure 4.7 Generated text from a code snippet 
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Figure 4.8 Generated questions for variable definitions 

 

 
Figure 4.9 Generated questions without using the proposed approach 
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Moving on to Figure 4.11, it explains the preceding code snippet depicted in Figure 4.10 using natural 

language, preparing it for input into the AI generator. 

 

 

 

 

Following this, Figure 4.12 displays the questions generated from the snippet description, 

demonstrating the relevance of the generated questions. However, Figure 4.13 illustrates the outcome 

of generating questions without providing a snippet description, resulting in improper questions 

marked by ZERO{} symbols and inaccuracies. This indicates the necessity of providing a description 

for accurate question generation.  

 

 

 

 

 

 

 
Figure 4.10 Python code for defining classes and objects 

 

 
Figure 4.11 Generated explanation of the code in Figure 4.10 
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In the third example, depicted in Figure 4.14, a function is defined to compute the area of a circle 

based on its radius. This code incorporates arithmetic operations and utilizes Python's 'math' module. 

Subsequently, Figure 4.15 exhibits the output resulting from describing the aforementioned code to 

input into the AI model.  Meanwhile, Figure 4.16 displays the generated questions derived from the 

description of the code snippet involving mathematical operations. Conversely, Figure 4.17 

showcases a question generated without describing the snippet. The results depicted in all figures are 

formatted in JSON, containing both the question and its solution. For open-ended questions, the 

QuestGen model provides the answer alongside the question, excluding the options. It is worth noting 

that there are warnings due to deprecated libraries utilized by the QuestionGen model, prompting 

necessary updates by the authors. Results indicate that generating questions directly from code 

without semantic translation yields poor quality, while ontology-based translation enables the 

generation of meaningful, contextually aligned questions using QuestGen. 

 

 
Figure 4.12 Generated questions for the code in Figure 4.10 

 

 
Figure 4.13 Generated questions without using the proposed model 
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Figure 4.14 Code snippet containing a function and arithmetic operations 

 

 
Figure 4.15 Generated explanation of the code in Figure 4.14 

 

 
Figure 4.16 Generated questions using the proposed model 

 

 
Figure 4.17 Generated questions without using the proposed model 
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4.4 Discussion 

In this experiment, various code snippets were tested for translation using the proposed ontology and 

fed into the QuestionGen model to create open-ended questions. Table 4.2 outlines the test cases, the 

generated questions, and the difficulty level of the tested code. It is noticed that human evaluation of 

AQG results is more accurate than automatic assessments [106]. Based on the literature, no evaluation 

metrics are specific to question generation from source code. The validity of the generated code is 

rated on a scale of 1 to 5, where one represents the least validity and five indicates the highest validity. 

Difficulty is assessed based on script logic, with five denoting complexity and one representing 

simplicity. For instance, identifying variable assignments is relatively straightforward, while 

understanding inheritance is more challenging. Generating appropriate questions from sophisticated 

or advanced code snippets, such as those utilizing third-party libraries, still presents limitations. 

Composing accurate questions becomes increasingly tricky as code complexity and inter-line 

relationships grow. Consequently, further development is necessary to enhance outcomes. 

Addressing this need will lead to more advanced results. Nevertheless, this study introduces a new 

dimension to e-learning and supplements existing question-generation approaches that have proven 

effective in textual sources.  

Table 4.2 Types of syntax covered 

Test case Code level of 

difficulty  

A generated 

question 

Context Generated 

question validity  

a) Variable declaration 

1 
What is the value of 

xfoo? 

xfoo is a string 

variable and its 

value is 'foo' 

4 

b) List declaration 

2 
'What are the items in 

the list variable ab? 

'ab is a list 

variable and it has 

2 items' 

5 

c) Class declaration 
3 What is a person? 

Person is a class 

definition 
5 

d) Instance and 

property 

initialization 

4 
What is a school an 

instance of? 

'school is an 

instance of the 

property' 

3 

e) Variable 

initialization, 

instance 

initialization, 

property. 

5 
'What is var1 an 

instance of?' 

var1 is an instance 

of the Person class 

with name 'Jane' 

and age 25" 

4 

f) Inheritance 

identification 
5 

Who does a student 

inherit from? 

Student inherits 

from Person 
5 

g) Libraries import 

4 

What is the name of 

the module that is 

imported? 

Imported module: 

math 
4 

h) Functions 
4 

What is a method 

definition? 

area is a method 

definition 
3 

i) Variable type 
4 What is r? 

'r is a variable of 

type unknown' 
4 

j) Functions result 

5 

'What is the 

calculated area of the 

circle? 

'a' represents the 

calculated area of 

the circle. 

5 
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4.5 Conclusion 

E-learning has become very popular recently, notably accelerated by the onset of the pandemic. One 

area that has gained considerable attention among researchers is the automatic generation of questions 

derived from learning materials. However, the predominant focus of existing efforts lies in generating 

questions from textual content. This work, however, concentrates on generating questions tailored for 

Python programming language learners derived explicitly from code snippets found in textbooks and 

course materials. Leveraging ontologies, this approach demands fewer computational resources, 

enhancing the scalability of the framework across diverse systems. The proposed framework 

harnesses ontological mapping, associating each syntactic element with its corresponding meaning 

and explanation. The process involves translating code into text and subsequently feeding this 

translated text into an AI-based model for question generation. It aims to alleviate the burden on 

educators and reduce the repetition of the same questions for different groups of students. Moreover, 

the generated questions from code snippets serve to evaluate students' general understanding. 

However, the proposed approach still has some limitations. The generation of questions relies solely 

on the QuestGen AI model, which can occasionally result in poorly phrased questions due to its AI 

nature. Additionally, the model might struggle to identify certain third-party libraries in complex code 

snippets. Hence, it represents an opportunity for future work to facilitate the insertion and 

categorization of concepts from all libraries. Finally, exploring alternative models such as GPT and 

expanding the framework to recursively process all imported libraries would enable a deeper 

understanding of complex syntactic structures. This enhancement would empower the ontology to 

explain code snippets better and generate more nuanced and fitting questions. 

4.6 Summary 

Generating questions is one of the most challenging tasks in the natural language processing 

discipline. With the significant emergence of electronic educational platforms like e-learning systems 

and the large scalability achieved with e-learning, there is an increased urge to generate intelligent 

and deliberate questions to measure students' understanding. Many works have been done in this field 

using different techniques; however, most approaches work on extracting questions from text. This 

research developed a model that can conceptualize and generate questions on the Python 

programming language from program codes. Different models are proposed by inserting text and 

generating questions; however, the challenge is understanding the concepts in the code snippets and 

linking them to the lessons so that the model can generate relevant and reasonable questions for 

students. Therefore, the standards applied to measure the results are the code complexity and question 

validity regarding the questions. The method used to achieve this goal combines the QuestionGenAi 

framework and ontology based on semantic code conversion. The results produced are questions 

based on the code snippets provided. The evaluation criteria were code complexity and question 

validity. This work has great potential for improving the e-learning platforms to improve the overall 

experience for both learners and instructors. 

 

Thesis 2: A hybrid system was developed that combines static code analysis and natural language 

processing using word embeddings to generate programming-related questions from source code. 

This approach improves contextual variety and semantic relevance by linking syntactic structures 

with conceptual representations. [P3] 
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Chapter 5 Evaluating Large Language Models for Code-Based Question Generation in 

Programming Education 

5.1 Introduction 

The field of natural language processing (NLP) has seen major progress in recent years, attributable 

mostly to the ever-growing corpus of textual data and remarkable developments in language 

modeling. These large language models have become the basis of the NLP revolution. They have 

shown abilities in comprehending and producing human language that have attracted researchers and 

developers. Large language models (LLMs) have played an important role in NLP. Models such as 

GPT-3.5, GPT-4, Llamas, Falcon, and Vicuna impact fields beyond NLP, such as code generation 

and understanding. Each model has a particular set of characteristics regarding performance, response 

quality, and efficiency in addressing different tasks. The number and complexity of datasets used in 

language modeling have recently increased. Language models have been the basis for NLP progress 

because of their language understanding and generation capabilities.  

In the domain of coding and software development, the computational capacity of these models has 

been used to automate the process of generating code-related questions. Consider a script written in 

a programming language like Python. This script is considered input to these large language models 

through an API connection. The output would be a collection of relevant questions about the input 

(e.g., Python script). This functionality speeds up code evaluation and is important for tasks such as 

code review, online technical support, and programming education. 

The large number of accessible language models creates a challenge. With all these options available, 

comparing them in terms of performance and output quality is necessary. The present study addresses 

this challenge by conducting a comparative evaluation of popular large language models. This study 

proposes a set of evaluation criteria to systematically assess and benchmark the performance of these 

models. These criteria represent essential aspects, including relevance, clarity and coherence, 

conciseness, and coverage. Every aspect has been examined to assess the performance of the large 

language models under investigation. This study evaluates these models, clarifying their distinctive 

characteristics and shortcomings. This study seeks to uncover insights that may be vital in various 

applications. Highlighting these best performers would allow educators, developers, and researchers 

to make informed decisions about adopting large language models for code-related question 

generation tasks. The study evaluates a diverse set of state-of-the-art LLMs. The primary objectives 

of this research paper are as follows: 

1. To define a set of evaluation criteria, including relevance, clarity and coherence, conciseness, and 

coverage, to measure the quality of questions generated by LLMs. 

2. To develop an approach for evaluating and comparing the performance of LLMs in question 

generation from program codes (code-based question generation). 

3. To empirically evaluate and rank the selected LLMs based on their performance in question 

generation from program codes (code-based question generation). 

This chapter is structured as follows. Section 5.2 outlines the methodology and describes the dataset 

used for evaluation. Section 5.3 provides a detailed account of the experimental setup. Section 5.4 

presents the evaluation results along with the ranking of the large language models. Section 5.5 

discusses the findings and explores the potential applications of large language models in question 

generation from program code. Section 5.6 concludes the chapter. A brief summary is provided at the 

end of the chapter. 

5.2 Methodology 

The methodology section in this chapter describes the proposed approach to evaluate and compare 

the performance of various large language models (LLMs) in generating questions from program 

codes. It presents the research phases, including data collection and preparation, the selection of 
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LLMs, evaluation metrics, execution of experiments, and the criteria for model ranking. This 

methodological framework is proposed to ensure a thorough assessment of the models and to reveal 

the top-performing models in question generation from program codes. As input to the models, 

Python, C++, and Java scripts are chosen in the experiments. This research would also be suitable for 

other programming languages. By providing a clear and structured methodology, the aim is to 

contribute to the existing research by understanding the strengths and weaknesses of these LLMs and 

their applicability in generating questions, thereby paving the way for more informed decision-

making in real-world applications where such capabilities are crucial. Similar studies have been 

carried out previously by [108], [109], and [110]. Algorithm 5.1 shows the pipeline of the proposed 

framework. It compares LLMs on how well they generate questions about code, using a reference 

evaluator model, and produce quantitative metrics. Given a set of code samples, each model generates 

questions for each sample using a consistent prompting strategy. A reference model then evaluates 

these generated questions to assess their quality along dimensions such as relevance and clarity. The 

algorithm computes the average score for each model and optionally tracks repetition rates to measure 

question diversity. It further constructs pairwise win matrices, computes win rates, and calculates 

ELO ratings to rank models based on relative performance. The outputs, including average scores, 

win rates, ELO ratings, repetition rates, and comparison matrices, are then summarized. 

 
Algorithm 5.1: Multi-Model Code Question Generation and Evaluation 

Input: Set of Code Samples (D), List of LLM Model Names (MODELS), Reference Evaluation Model (EVAL_MODEL) 

Output: Summary of Model Performance Metrics (SMPM) 

1: Initialize scores_by_model, reps_by_model, results as empty. 

2: For each sample in D do: 

     3: For each model_name in MODELS do: 

      4: prompt ← build_generation_prompt(sample.code, sample.language) 

      5: questions ← LLM(model_name).generate_questions(prompt) 

      6: metrics ← evaluate_questions(questions, EVAL_MODEL) 

      7: score ← average_scores(metrics) 

      8: repetition ← repetition_rate(questions) // optional 

      9: Store (model_name, sample, metrics) in results 

      10: Append score to scores_by_model[model_name] 

      11: Append repetition to reps_by_model[model_name] 

     12: End For 

13: End For 

14: wins, comparisons ← build_win_matrix(scores_by_model) 

15: win_rate ← win_rates(wins, comparisons) 

16: elo ← elo_ratings(scores_by_model) 

17: repetition ← aggregate_repetition(reps_by_model) 

18: Construct SMPM as {ranking(scores_by_model), win_rate, elo, repetition, wins, comparisons} 

 

5.2.1 Data Collection 

The methodology employed in this research involves using a diverse dataset of Python, C++, and 

Java code snippets, which was prepared previously to cover a wide range of these languages' syntax. 

We utilized our software tool to have each LLM generate questions based on these code samples. The 

generated questions are then assessed against the predetermined evaluation criteria, and the models 

are ranked according to their overall performance. 

1) Selection of large language models: The research commenced with meticulously selecting large 

language models (LLMs) for inclusion in the evaluation. The chosen LLMs represent a diverse 

spectrum of model sizes, architectures, and capabilities, ranging from smaller, established models to 

novel and expansive ones. This diverse selection is crucial for thoroughly examining the LLMs’ 
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proficiency in question generation from program codes (e.g., Python scripts). We chose the following 

LLMs for evaluation: 

1) gpt-4-0314 

2) Llama-2-70b-chat-hf  

3)    gpt-4-0613 

4) Llama-2-13b-chat-hf 

5) Claude-2 

6) gpt-3.5-turbo-0613 

7) h2ogpt-gm-oasst1-en-2048-falcon-40b-v1 

8) h2ogpt-gm-oasst1-en-2048-falcon-40b-v2 

9) vicuna-33b-v1.3 

10) falcon-40b-sft-top1-560 

11) h2ogpt-research-oasst1-llama-65b 

12) mixtral-8x7b-instruct-v0.1 

13) h2ogpt-gm-oasst1-en-2048-falcon-7b 

14) h2ogpt-gm-oasst1-en-2048-falcon-7b-v3 

15) falcon-40b-instruct

These models were selected to encompass various sizes, ensuring a comprehensive performance 

evaluation. Table 5.1 shows the availability of each model and the number of parameters it has. All 

the models are based on transformer architecture; therefore, we did not mention the architecture in 

the table.  

Table 5.1 Selected large language models 

Model Parameters Availability 

gpt-4-0314 175B Paid 

llama-2-70b-chat 70B Free 

gpt-4-0613 175B Paid 

llama-2-13b-chat 13B Free 

claude-2 130B Paid 

gpt-3.5-turbo-0613 175B Paid 

falcon-40b-v1 40B Free 

falcon-40b-v2 40B Free 

vicuna-33b-v1.3 33B Free 

llama-65b 65B Free 

falcon-40b-sft-top1-560 40B Free 

mixtral-8x7b-instruct-v0.1 56B Free 

falcon-7b-v3 7B Free 

falcon-40b-instruct 40B Free 

falcon-7b 7B Free 
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2) Data Preparation: The heart of the experiment lies in the quality and diversity of the data used. A 

curated set of Python, C++, and Java scripts prepared covering an array of programming concepts, 

complexities, and domains. We used three programs: procedural, object-oriented, and general. The 

general code was taken from online sources. The two other codes were prepared during some classes 

taught at the university. In these programs, we collected the diversity of programming elements so 

that all basic topics (from the Python/C++/Java language reference) are represented. This set of scripts 

was meticulously vetted to ensure its relevance, representativeness, and suitability for evaluating the 

LLMs’ question-generation capabilities.  

5.2.2 Question Generation 

The next phase involved instructing each one of the selected LLMs to generate a diverse set of 

questions based on the attached scripts. This process required the formulation of a carefully crafted 

prompt, which was used as input for each LLM. All the models used the same role and content to get 

measurable results. The prompt served as a crucial communication channel between the software and 

the models, guiding them to generate questions relevant to the script provided. The entire script was 

passed to each of the abovementioned LLMs as part of the prompt. The models were instructed to 

generate diverse questions based on the attached script. The prompt utilized for generating the 

question set is given in Figure 5.1. It was designed to be informative and specific, conveying the task 

of clearly generating questions from the Python/C++/Java script to the LLMs. Figure 5.2 shows an 

example of responses to the presented prompt. 

 

 

 

Figure 5.1 Prompt to generate questions from source code 

 

 

 

Figure 5.2 Response to a prompt 
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A Python script, taken from the prepared collection, was provided as input to each LLM as part of 

the prompt. Figure 5.3 shows an example of another Python script. Each script in our dataset was 

processed sequentially, and the LLMs were prompted to generate 50 questions based on each attached 

script. The scripts are publicly available on GitHub [111]. 

As the questions were generated, they were associated with the script from which they were derived. 

This association was needed in the evaluation process as it allowed us to accurately assess the 

generated questions’ relevance to the script content. Questions were considered relevant if they 

indicated a clear contextual connection to the associated script, contributing to understanding its 

content.  

Combining diverse LLMs and carefully curated scripts forms the basis for systematically evaluating 

these models in generating questions. The methodology emphasizes the importance of this data-

driven approach in ensuring meaningful and insightful results. This intermediary step in the solution 

provided a substantial collection of questions generated by each LLM for every script. The generated 

questions were then subjected to a comprehensive evaluation process explained in the subsequent 

sections of this methodology. 

 

5.2.3 Performance Metrics 

The next step in the approach was to assess and compare the performance of the selected LLMs. The 

assessment goes by analyzing and evaluating the generated questions. To achieve this, a multifaceted 

set of evaluation techniques was used, which included a hybrid of objective and subjective metrics 

comprising the following aspects: 

1) Relevance: To evaluate the relevance of the generated questions, GPT-4-0314 was used as an A/B 

tester. It rated the LLM-generated questions on a scale of 1 to 10, considering how well they related 

to the content of the codes. 

2) Clarity and Coherence: The clarity and coherence of the generated questions were assessed by 

obtaining ratings from the GPT-4-0314 as an A/B tester. LLM-generated questions were rated on 

their ability to convey ideas clearly and logically. 

3) Conciseness: Another important dimension of the evaluation was the conciseness of the questions. 

This aspect was measured by assessing the length and verbosity of the generated questions to identify 

concise and to-the-point questions. 

4) Coverage: To determine how LLMs address the content of scripts, the coverage of different aspects 

of the scripts within the generated questions was measured. This involved comparing how well the 

LLMs addressed various sections and script details. 

5) Leveraging GPT-4-0314 as an A/B Tester: To gain deep insights into aspects like clarity, 

conciseness, and coverage, an in-depth analysis of the generated questions was performed using 

 

Figure 5.3 Sample Python script 
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“GPT-4-0314.” This allowed a better understanding of the specific strengths and weaknesses of the 

LLMs when generating questions.  

6) Human Evaluation: It offers indispensable value to automated evaluation by validating core 

findings while enriching the analysis with pedagogically grounded insights. The convergence 

between algorithmic educational scoring and expert human judgment reinforces the credibility of 

computational methods in educational research. However, human evaluators contribute an 

irreplaceable dimension: a sensitivity to real-world classroom relevance and instructional 

applicability. This perspective, often absent from purely algorithm-driven metrics, underscores the 

importance of adopting a holistic, multi-layered framework for evaluating question quality in 

educational technology. Relevance and Educational Value are used for this purpose. 

In summary, the research employed a robust methodology involving data collection, a diverse 

selection of LLMs, comprehensive performance metrics, custom software development, and 

leveraging the SOTA GPT-4-0314 model to evaluate and compare the performance of LLMs in 

generating questions related to the codes. The results provide valuable insights into the strengths and 

weaknesses of various LLMs, aiding in selecting the most suitable models for different application 

scenarios, which are shared in the next sections. Based on the input shown in Figure 5.3, some of the 

generated questions and their evaluations are shown in Figure 5.4. 

 

5.2.4 Experimental Setup 

This section provides a detailed description of the experimental setup employed for evaluating the 

performance of the selected models in generating questions from codes. The objective of this setup 

was to get a collection of reliable results that would facilitate the comparison of LLMs and the 

identification of the top-performing models. A custom software was developed to serve this purpose. 

This software accepts program codes as input, invokes the selected LLMs via API calls, and collects 

the generated questions. For each LLM, the software collected a substantial sample of questions for 

analysis.  

5.2.4.1 Software Environment 

The software environment was configured with the following components: 

• Operating System: Windows 10 Pro distribution to provide a stable and efficient computing 

environment. 

 

Figure 5.4 Evaluation of the generated questions 
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• Python: The programming language to implement the custom software tool that interfaces with 

the LLMs. 

• Deep Learning Frameworks: PyTorch 2.1 and Hugging Face v3 Transformers library were 

employed for managing and interfacing with the LLMs. 

• API: Different APIs were used for every model. 

• AWS Instances: Different AWS instances were used to deploy open-source LLMs. 

5.2.4.2 Data Splitting 

To ensure the robustness and reliability of the experiments, a collection of code scripts was submitted 

at once to provide context to the model and, therefore, assist in generating more robust questions. 

Thereafter, the LLMs were instructed to generate questions based on the input. 

5.2.4.3 Evaluation Metrics 

The LLM-generated questions were evaluated using a combination of quantitative and qualitative 

metrics. As mentioned in the methodology section, these metrics include relevance, clarity and 

coherence, conciseness, and coverage. While the human evaluation metrics include relevance and 

educational value. 

5.2.4.4 Model Execution  

Execution of the experiments was a systematic approach. Each LLM was fed scripts individually as 

prompts through the custom software. The LLMs generated a set of questions for each script, which 

were recorded. The generated questions were associated with their script for accurate evaluation. The 

experiments were executed sequentially for all selected LLMs to maintain consistency and avoid 

potential bias that may arise from parallel execution. 

5.2.4.5 Model Ranking Criteria 

The model ranking criteria were established based on the aggregated performance results across the 

evaluation metrics. The models that showed high performance across these criteria were identified as 

the top-performing LLMs for the task of generating questions from codes (code-based question 

generation). This experimental setup was designed to provide a reliable and comprehensive 

assessment of LLMs’ capabilities in question generation from program codes. 

5.2.4.6 Repetition Rate 

This criterion determines if questions are repeated in any model based on each 10-question batch 

increase. For instance, each model is required to generate the first 10 questions, then 20, then 30, and 

so on. The goal is to calculate the repeated questions generated for each model. This calculation is 

done manually by searching through the questions. The automatic evaluation for this part is avoided 

because some of the questions may be paraphrased. 

5.3 Results 

This section presents the results of the comprehensive evaluation of various LLMs for the task of 

generating questions from program codes. The evaluation encompassed a diverse set of metrics, 

including relevance, clarity and coherence, conciseness, and coverage. Based on the accumulated data 

and the aforementioned evaluation criteria, the LLMs have been ranked, highlighting their strengths 

and weaknesses in question generation.  

5.3.1 Model Rankings 

Table 5.2 presents the average of each criterion score for each model of the LLMs based on the 

question generated. 
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Table 5.2 Average criteria scores 

Model Relevance Clarity and Coherence Conciseness Coverage 

gpt-4-0314 9.85 8.87 8.13 8.57 

gpt-4-0613 8.46 8.23 8.80 9.22 

gpt-3.5-turbo-0613 9.37 7.84 8.69 7.61 

claude-2 7.86 7.97 8.80 7.96 

falcon-7b-v3 8.45 8.52 8.26 7.32 

vicuna-33b-v1.3 8.84 8.04 7.51 7.88 

falcon-40b-v2 7.93 8.38 7.59 7.65 

llama-2-13b-chat 7.69 8.22 7.63 8.14 

llama-2-70b-chat 7.76 7.71 6.27 7.60 

mixtral-8x7b-instruct-v0.1 6.51 6.55 7.62 7.46 

falcon-40b-v1 6.63 7.53 6.68 6.36 

falcon-40b-sft-top1-560 7.51 7.88 6.54 7.29 

llama-65b 7.45 6.85 7.54 7.53 

falcon-7b 7.23 7.83 6.83 7.76 

falcon-40b-instruct 7.12 8.03 6.83 7.58 

 

The model average score is based on the cumulative scores of each criterion across all the questions, 

with higher ratings indicating superior accuracy in question generation from scripts. The rankings 

reveal that “gpt-4-0314” and “gpt4-0613” secured the first and second positions, respectively, 

demonstrating their effectiveness and proficiency in generating relevant, high-quality questions. 

Furthermore, to gain a comprehensive perspective on the performance of the LLMs under evaluation, 

their Average Win Rate was analyzed against all other models. The term Win Rate is used to identify 

the cumulative score for each model and helps determine the best model. For example, if a question 

is generated by gpt-4-0314 model and compared to the Claude-2 model, and the winner for that 

particular question is gpt-4-0314, this would add a point to the gpt-4-0314 model. Then, gpt-4-0314 

is compared to other models; if any model wins a point, its score grows, and then finally, all the 

models’ scores are calculated, and the highest winner is ranked first. The approach allows us to 

identify models that have similar win rates to other models. This analysis offers valuable insights into 

how each LLM fared directly compared to its peers, assuming uniform sampling and no ties in the 

evaluation metrics. The chart presented in Figure 5.5 illustrates the results of this assessment, 

highlighting the models that consistently outperformed others in generating questions from codes. 

The following formulas, 5.1 and 5.2, would calculate the New Rating and the Predicted Rating, 

respectively [112]. This technique is used here for the artificial intelligence evaluation domain; it is 

derived from tournaments in sports, where it is often used. 

 

New Rating =  Old Rating + K × (W − P) (5.1) 

 

Where K refers to the maximum adjusted value, in this context, it is a constant integer number like 

32. The W is the actual result of the game (1 for a win, 0.5 for a draw, and 0 for a loss). Finally, the 

P is the expected result, calculated using the logistic function in equation 5.2. 
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P =
1

1 + 10
(Mo−Mp)

score point

         (5.2) 

P refers to the expected outcome for a certain model, Mo is for the model opponent, and Mp refers to 

the model player. The traditional constants in this formula are the score points, 1 and 10, as those are 

customized. The score point in this context is 400. These two equations form the core of the Elo rating 

system, originally developed by Arpad Elo to provide a fair and dynamic method of ranking chess 

players based on match outcomes. The Elo system has been widely adopted in various competitive 

domains beyond chess, including online gaming, sports tournaments, and AI benchmarking, due to 

its simplicity and effectiveness in capturing relative skill levels. The second equation computes the 

expected probability of a player winning against an opponent based on their rating difference, while 

the first updates the player’s rating after each match according to the actual outcome and the expected 

result. This combination allows the system to adjust ratings to reward unexpected wins and penalize 

unexpected losses, ensuring ratings remain reflective of current performance. 

The “Average Win Rate” metric provides a clear and quantitative view of the models’ relative 

strengths, highlighting their competitiveness in question generation. Figure 5.5 illustrates the Average 

Win Rate of each language model against all other models in the evaluation, assuming uniform 

sampling and no ties. The Average Win Rate is a valuable metric for understanding how each LLM 

performed directly compared to its peers in generating questions from program codes. Figure 5.6 

shows the Win rate matrix for every model.  

5.3.2 Observations and Insights 

• gpt-4-0314 and gpt-4-0613: These two models consistently outperformed the others across 

multiple evaluation criteria. They demonstrated a strong ability to generate relevant, clear, and 

comprehensive questions. Their top positions highlight their suitability for question-generation 

tasks related to the scripts. 

 

Figure 5.5 Average win rate against all other models 
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• Relevance: “gpt-4-0314” and “gpt-4-0613” excelled in relevance, providing questions that were 

contextually connected to the script content and clearly articulated. 

• Coverage: Some models, such as falcon-40b-v1 and mixtral-8x7b-instructv0.1demonstrated 

limited coverage, with questions that missed certain key aspects of the scripts. 

Figure 5.7 shows the metric score for the models and compares relevance, clarity and coherence, 

conciseness, and coverage. Clearly, gpt4-0314 shows superiority. 

 

 

 

Figure 5.6 Win rate matrix 

 

 

 

Figure 5.7 Models criteria score comparison 
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5.3.3 Repetitive Evaluation 

Table 5.3 shows the repeated question rate results. The table shows that gpt-4-0314 has the best rate 

among the other models. Figure 5.8 shows a visual representation of the data. As shown in Figure 

6.8, GPT-4 in both versions had the lowest question repetition. At the same time, falcon-7b had the 

highest number of repeated questions. 

 

Table 5.3 Repetition rates for each model at different question levels 

Model 10 questions 20 questions 30 questions 40 questions 50 questions 

gpt-4-0314 0 0 0 1 1 

llama-2-70b-chat 0 0 1 1 2 

gpt-4-0613 0 0 1 1 2 

llama-2-13b-chat 0 1 1 2 2 

claude-2 0 1 1 2 3 

gpt-3.5-turbo-0613 0 1 1 2 3 

falcon-40b-v2 1 1 2 2 3 

vicuna-33b-v1.3 1 2 3 3 4 

falcon-40b-v1 1 2 3 3 4 

llama-65b 2 3 3 4 5 

falcon-40b-sft-top1-560 2 3 3 4 5 

mixtral-8x7b-instruct-v0.1 3 4 4 5 6 

falcon-7b-v3 3 4 4 5 6 

falcon-40b-instruc 3 4 4 5 6 

falcon-7b 3 4 5 6 7 

 

 

Figure 5.8 Repetition rate 
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5.3.4 Human Evaluation 

While the study incorporates well-defined automated evaluation metrics, relying solely on 

algorithmic assessment can limit the contextual and pedagogical nuance captured in generated 

questions. To address this limitation, human evaluation was introduced as a complementary measure. 

Five educators independently assessed a stratified sample of 45 automatically generated questions; 

15 per programming language (C++, Java, and Python). Using a 5-point Likert scale (1 = poor, 5 = 

excellent), each question was rated along two key dimensions: relevance and educational value. Table 

5.4 summarizes the human evaluation scores across the three programming languages and code types. 

 

Table 5.4 Human evaluation summary table 

Language Code Type Relevance Educational Value 

Python General 4.8 4.75 

Python Procedural 4.85 4.83 

Python Object-Oriented 4.95 4.87 

Java General 4.85 4.78 

Java Procedural 4.88 4.86 

Java Object-Oriented 4.94 4.92 

C++ General 4.65 4.58 

C++ Procedural 4.72 4.65 

C++ Object-Oriented 4.85 4.8 

Average Score All 4.83 4.78 

 

Table 5.5 presents the results of the repeated-measures ANOVA on relevance and educational value 

metrics. The analysis revealed no statistically significant differences across programming languages 

(F(2,8) = 0.96, p = 0.4239), suggesting that language choice did not affect perceived question 

relevance meaningfully. A similar pattern was observed for the educational value metric (p = 0.0689), 

which approached but did not reach the conventional threshold for significance (α = 0.05). Post-hoc 

pairwise comparisons, summarized in Table 5.6 and Table 5.7, support this finding. No significant 

differences emerged between language pairs concerning relevance, as all adjusted p-values exceeded 

the threshold for statistical significance. About educational value, the comparison between C++ and 

Python yielded the lowest p-value (p = 0.0186); however, after applying the Bonferroni correction, 

the adjusted p-value rose to 0.0557. This result may be considered marginally significant. Finally, a 

Pearson correlation analysis revealed a weak positive relationship between relevance and educational 

value (r = 0.30). It suggests that while the two metrics are related, they capture distinct aspects of 

human-perceived question quality. 

 

Table 5.5 Repeated measures ANOVA results 

Metric F-value Num DF Den DF p-value 

Relevance 0.957 2 8 0.424 

Educational Value 3.808 2 8 0.069 
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Table 5.6 Post-hoc pairwise comparisons – relevance (Bonferroni Corrected) 

Language 1 Language 2 t-stat p-value Bonferroni Adjusted p 

C++ Java 0.784 0.477 1.000 

C++ Python -0.459 0.670 1.000 

Java Python -1.633 0.178 0.533 

 

Table 5.7 Post-hoc pairwise comparisons – educational value (Bonferroni Corrected) 

Language 1 Language 2 t-stat p-value Bonferroni Adjusted p 

C++ Java -1.907 0.129 0.388 

C++ Python -3.833 0.019 0.056  

Java Python -0.514 0.634 1.000 

 

5.4 Discussion 

This research is particularly unique as it addresses a gap in the literature concerning artificial 

intelligence-based question generation for programming education. Earlier studies, such as the one 

conducted by Maity et al. [113], focused on how LLMs can generate different kinds of questions, 

including open-ended and multiple-choice formats. Although these studies focused on generating 

questions about multi-language and multi-format general educational purposes, they did not consider 

programming-related artifacts such as program codes. Similarly, Tran et al. [114] and Doughty et al. 

[115] addressed the use of LLMs for generating and answering multiple-choice questions (MCQs) in 

computing education. Still, their focus was mainly on modifying existing questions rather than 

generating new ones from program codes. Their work indicated how effective models like GPT-3 and 

GPT-4 are in assessing and generating MCQs related to specific learning objectives. The current 

research builds on this existing work by utilizing LLMs to generate new questions directly from 

program code, an area that has not been extensively explored. Unlike previous research that depended 

on text-based datasets or learners' input, the proposed method assesses how well LLMs can convert 

program codes into educational questions. This method addresses a significant gap by providing 

automated, context-specific question generation tools tailored to programming education.  

Studies such as those by Baral et al. [116] and Kargupta et al. [117] worked on the assessment 

capabilities of LLMs. They focused on evaluating student responses rather than generating questions. 

The current study complements these initiatives by focusing on the initial phase of educational 

assessments (developing high-quality questions that align with programming curricula). The current 

research enhances understanding of LLM capabilities using evaluation metrics such as relevance, 

clarity and coherence, conciseness, and coverage. These metrics offer a more detailed perspective 

than previous studies, which typically focused on general performance benchmarks. These findings 

improve the use of artificial intelligence-driven tools in programming education, providing scalable 

solutions for educators and learners alike. The rankings and observations from this evaluation have 

significant implications for applications that involve generating questions from program codes. The 

models “gpt-4-0314” and “gpt-4-0613” are well-suited for tasks where the generation of questions 

that are both relevant and coherent with the script content is critical. Moreover, this research also 

highlights the importance of using a combination of metrics to comprehensively evaluate LLMs for 

question generation. The four metrics and the win rate offer a well-rounded view of a model’s 

performance in this complex task. The proposed framework can assist teachers and online instructors 

in assessing and testing student knowledge with a large question base. Furthermore, different tests 

are performed on various models to assist in selecting the best one. The framework also helps in 

testing model capability in case other models are released in the future. 
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The proposed LLM-based framework outperforms some existing approaches in programming 

education assessment by addressing their core limitations. The ontology-based system [P1], though 

structured via semantic similarity using BERT embeddings (98.5% accuracy), is constrained to 

Python and lacks human evaluation, limiting its pedagogical depth. It fails to assess cognitive 

alignment or instructional appropriateness, which are essential for effective educational questions. 

The hybrid semantic-AI method [P3], relying solely on human evaluation, introduces scalability 

challenges and conceptual limitations. Its single-language focus and absence of automatic metrics 

hinder systematic, repeatable assessment across broader educational contexts. The template-based 

approach [P5] supports multiple programming languages and incorporates both human and automated 

evaluation. However, low quality scores (0.57–0.59) indicate limited effectiveness, with constrained 

adaptability to diverse programming constructs. In contrast, the proposed multi-language LLM-based 

system (Python, C++, Java) integrates both robust automatic metrics (e.g., relevance: 9.85; clarity: 

8.87) and expert human evaluation (relevance: 4.83; educational value: 4.78). This dual-layered 

assessment ensures both technical correctness and pedagogical soundness, offering comprehensive 

coverage and educational alignment previously unmet by prior models. 

In summary, the evaluation has provided valuable insights into the capabilities of various LLMs in 

generating questions from program codes. The top-performing models can be valuable assets in 

applications such as educational platforms, code analysis, and automated documentation generation, 

where high-quality question generation is essential. 

5.5 Conclusion 

Large language models (LLMs) were extensively explored to evaluate their ability to generate 

questions from program code. Python, C++, and Java codes were used as input for this purpose. The 

study involved a diverse range of LLMs for generating code-based questions and automatically 

evaluating them. These models' substantial dataset of questions was collected and analyzed 

systematically. The approach used evaluation metrics, including relevance, clarity and coherence, 

conciseness, and coverage, to comprehensively assess their question-generation abilities. Human 

evaluation was also introduced as a complementary measure.  

The results of the current research are clear and compelling. The models, gpt-4-0314, gpt-4-0613, 

and Llama-2-70b-chat, consistently ranked as top-performing LLMs across various evaluation 

criteria. These models demonstrated their proficiency in generating contextually relevant questions 

while maintaining clarity, conciseness, and comprehensive coverage of the source code content. Their 

performance emphasizes their suitability for educational platforms, code analysis, and automated 

documentation generation applications. 

The metrics provided quantitative insights into the syntactic and semantic correctness of the generated 

questions. Ratings were conducted using automatic artificial intelligence assessments (gpt-4-0314), 

ensuring the generated questions were grammatically correct, semantically meaningful, and 

contextually appropriate. 

The implications of the findings extend beyond question generation. They hold practical value for 

fields that rely on effective natural language understanding and generation. As artificial intelligence 

systems increasingly facilitate human-computer interaction, understanding the strengths and 

limitations of LLMs is essential. 

While gpt-4-0314, gpt-4-0613, and Llama-2-70b-chat led the rankings, other evaluated LLMs also 

showed value in specific use cases and can be advantageous for tasks emphasizing particular question 

generation aspects. 

This research introduces a modern approach to automatically generate and evaluate questions from 

program codes, contributing to understanding the evolving role of LLMs in this area. A valuable 

resource has been created for decision-makers employing LLMs in diverse applications by assessing 

their performance. The findings demonstrate that, as artificial intelligence technologies advance, 
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models like gpt-4-0314 and gpt-40613, and Llama-2-70b-chat set new benchmarks in natural 

language generation, driving innovation and potential in various domains.  

5.6 Summary 

Artificial Intelligence and Large Language Models (LLMs) are growing rapidly. E-learning platforms 

demand effective question-generation methods, and LLMs have made this process much easier. 

While recent studies have focused on generating questions from text, no prior research has evaluated 

LLMs’ ability to generate questions from program codes (code-based question generation). This study 

introduces a framework for assessing LLMs’ performance in generating questions from program 

codes. Tailored software was developed to prompt Python, C++, and Java scripts (as input) to LLMs 

via APIs and evaluate the generated questions. The study compared diverse models, including GPT-

3.5, GPT-4, Llama, and Claude2, using automatic evaluation metrics such as relevance, clarity and 

coherence, conciseness, and content coverage. Human evaluators assessed the generated questions 

using relevance and educational value metrics to complement the automatic evaluation. Results 

indicated that gpt-4-0314 and gpt-4-0613 outperformed other models across metrics, highlighting 

their effectiveness in question-generation tasks. This article discusses the present research's conduct 

and outcomes, delivering perspectives regarding the models' strengths and limitations while guiding 

future research. The findings provide insight for educators, software developers, and the academic 

community. The methodology can help software developers and researchers implement and evaluate 

these models effectively. 

 

Thesis 3: A systematic evaluation framework was developed to assess the question generation 

capabilities of large language models, using both automatic and human-centered evaluation metrics. 

The findings provide insights into their strengths and limitations in generating programming-related 

assessment questions for potential educational use. [P4] 
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Chapter 6 Template-Based Question Generation from Code Using Static Code Analysis 

6.1 Introduction 

The manual creation of programming exercises remains time-consuming for educators, often taking 

hours to ensure questions align with specific learning objectives and code complexity levels [P2]. 

This challenge intensifies in multi-language educational settings where instructors must 

simultaneously maintain question banks for multiple programming languages. Recent advances in 

static analysis frameworks and attribute grammar systems have laid the technical foundation for AQG 

tools that parse code structures, extract semantic elements, and populate pedagogical templates [118], 

[119]. Traditional AQG systems relied heavily on template-based approaches that limited question 

diversity and contextual relevance [P3]. Integrating Abstract Syntax Tree (AST) analysis with 

reference attribute grammars has enabled more sophisticated code element extraction, particularly for 

object-oriented languages like Java and C++ [120], [121], [122]. These technological advancements 

coincide with growing pedagogical demands for personalized learning pathways and competency-

based assessment frameworks in computer science education [44]. Cross-language question 

generation introduces unique parsing challenges due to varying syntax rules and programming 

paradigms. There is no agreed-upon or standard evaluation metric for code-based question generation 

for educational purposes. The current few systems deal with one programming language (single-

language) without fully automated evaluation [P2], [P3]. As a result, the main added value of this 

chapter is dealing with multi-language code-based question generation and automating the evaluation 

process.  

This chapter presents a multi-language code question generator capable of automatically producing 

assessment questions for Python, C++, Java, and C codes. It focuses on code-based question 

generation using static code analysis. Static code analysis is adopted to generate questions from 

program code. It offers pattern-based algorithm detection, structural analysis, and question templates. 

Pattern-based algorithm detection is performed through regex patterns. Structural analysis examines 

functions, loops, conditionals, and variables to generate relevant questions. Question templates 

involve predefined templates for different code elements to create varied questions. The research 

objectives of this study are: 

1. Developing a multi-language code question generator capable of automatically producing 

assessment questions for Python, C++, Java, and C codes (code-based question generation). 

2. Establishing an approach for automatically evaluating the proposed system based on a set of 

evaluation criteria through experiments on a real-world dataset to demonstrate its effectiveness 

in generating questions from program codes. 

This chapter is structured as follows: Section 6.2 outlines the methodology and the system 

architecture. Section 6.3 presents the results of the multi-language question generation and evaluation. 

Section 6.4 discusses the findings, contributions, and limitations. Section 6.5 concludes the chapter 

with key insights, and a summary is provided at the end.  

6.2 Methodology 

This chapter proposes a multi-language code question generator capable of automatically producing 

assessment questions for Python, C++, Java, and C codes. The four programming languages were 

chosen based on the up-to-date The Importance Of Being Earnest (TIOBE) Index, which indicates 

the popularity of programming languages. Python, C++, Java, and C are the most popular 

programming languages worldwide according to the TIOBE Index as of May 2025 [123]. While the 

paper [46] primarily focuses on general educational applications, it is important to note that modern 

adaptations of Bloom's Taxonomy can be tailored to specific domains, like programming. This 

adaptation allows for evaluating cognitive tasks unique to programming education, ensuring that the 

generated questions are relevant and effective for learners in that field. As a result, the methodology 
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in the current research adopts Bloom’s Taxonomy evaluation levels: remembering, understanding, 

applying, analyzing, evaluating, and creating.  

Figure 6.1 shows the proposed methodology for a code-based multi-language question generator. The 

research methodology behind the multi-language code-based question generator involves several 

interconnected components that work together to analyze code snippets and generate relevant 

questions. A detailed explanation of the methodology follows.  

6.2.1 Language-Specific Parsing 

Parsing is the process of checking the structure of the code and identifying elements like keywords 

and variables. The foundation of the system is a modular parser that handles multiple programming 

languages: 

1. Language detection: The system first identifies the programming language of the input code 

using heuristic pattern matching. This detection is based on language-specific keywords, 

syntax patterns, and structures. 

2. Language-specific parsers: Each supported language (Python, Java, C++, and C) has a 

dedicated parser that implements the common code parser interface. This enables polymorphic 

handling of different languages while accounting for their unique characteristics. 

3. Python parser implementation: For Python, the system leverages the AST module to perform 

deep structural analysis of the code. This provides detailed information about functions, loops, 

conditionals, and variables. 

4. Other language parsers: For Java, C++, and C, the system implements regex-based parsers that 

identify key structural elements despite the lack of native AST support in Python for these 

languages. 

 
Figure 6.1 Methodology for multi-language code-based question generation 
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6.2.2 Code Element Extraction 

After parsing, the system extracts various structural elements from the code: 

1. Function analysis: The system extracts information about functions, including their names, 

parameters, return statements, and recursion patterns.  

2. Loop detection: The system identifies different types of loops (for/while) and extracts 

information about their variables and conditions. 

3. Conditional statement analysis: For conditional statements (if/else), the system extracts 

conditions, identifies branch patterns, and determines nesting levels. 

4. Variable tracking: The system extracts variables, their data types (when possible), initialization 

values, and their modifications throughout the code. 

5. Algorithm identification: Using a dictionary of algorithm-specific regex patterns, the system 

identifies common algorithms implemented in the code (e.g., binary search, sorting algorithms, 

and graph traversals). 

6.2.3 Template-Based Question Generation 

The question generation process uses templates customized for different code elements and difficulty 

levels, as shown in Figure 6.2: 

1. Difficulty stratification: Questions are categorized into three difficulty levels - beginner, 

intermediate, and advanced - aligned with increasing cognitive complexity. 

2. Element-specific templates: Each code element type (functions, loops, conditionals, variables, 

algorithms) has specific question templates designed to test understanding at different levels. 

3. Dynamic template parameters: The system dynamically fills template parameters with specific 

code elements. For example, function parameter examples are generated based on parameter 

names using heuristic rules. 

6.2.4 Cognitive Science-Based Question Design 

The templates are designed based on principles from cognitive science and educational theory, as 

shown in Figure 6.2: 

1. Bloom's Taxonomy alignment:  

a) Beginner questions focus on remembering and understanding (e.g., "What is the purpose 

of function X?"). 

b) Intermediate questions target applying and analyzing (e.g., "Trace the execution of function 

X with inputs Y"). 

c) Advanced questions emphasize evaluating and creating (e.g., "How could you optimize 

function X?"). 

2. Contextual relevance: Questions directly reference specific code elements, line numbers, and 

variable names from the input code to create contextually relevant assessments. 

 'loop': { DifficultyLevel.BEGINNER: [ 

"What is the purpose of the {type} loop on line {line_num}?", "How many times will the {type} loop on line 

{line_num} execute with typical input?", "What happens in each iteration of the {type} loop on line {line_num}?",], 

 

Figure 6.2 Sample of templates used for code-based question generation 
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3. Balanced coverage: The system distributes questions across different code elements to ensure 

a comprehensive assessment of the code snippet.  

6.2.5 Question Post-Processing 

After generating candidate questions, the system applies several post-processing steps: 

1. De-duplication: Eliminates duplicate or highly similar questions to ensure variety. 

2. Shuffling: Randomizes the order of questions to prevent predictable patterns. 

3. Limiting: Controls the number of questions to prevent overwhelming the user, while 

maintaining a balance of difficulty levels. 

4. Fallback strategies: If specific elements cannot be extracted (e.g., due to parsing errors), the 

system falls back to more general questions about the code. 

6.2.6 Evaluation Approach 

The methodology includes an evaluation approach to assess the quality of the generated questions. 

The evaluation of the proposed system is designed around a set of defined criteria. It uses experiments 

conducted on a real-world dataset to demonstrate its effectiveness in generating questions from 

program code. The methodology involves a structured approach to assess the quality of the generated 

questions across several key dimensions: 

1. Bloom's Taxonomy: The Bloom’s Taxonomy cognitive level distribution is computed using 

Bloom's Taxonomy alignment to assess cognitive level distribution (remembering, understanding, 

applying, analyzing, evaluating, and creating). 

2. Difficulty distribution: The questions are analyzed across three difficulty levels (Beginner, 

Intermediate, Advanced) for four programming languages: C, C++, Java, and Python. 

3. Linguistic complexity: This dimension combines word count, sentence count, Flesch-Kincaid 

Grade Level, and average sentence length. All values are normalized to a 0–1 scale, with sentence 

length capped at 25 words and grade level capped at 10. The final score is computed using the 

formula: 

Linguistic Complexity = {
0.6 ∙ Normalized Grade Level

+ 0.4 ∙ Normalized Sentence Length
 

(6.1) 

4. Code coverage: Measures how comprehensively the generated questions address different code 

components. The score is calculated as:  

Code Coverage = {
0.4 ∙ Variables Coverage

+ 0.6 ∙ Functions Coverage
 

(6.2) 

5. Precision: Defined as the ratio of relevant or correct questions to the total number of questions 

generated by the system.   

Precision =  True Positives / (True Positives +  False Positives) (6.3) 

6. Recall: Assesses the system’s ability to generate all relevant or expected questions, using code 

coverage as a proxy indicator for recall.  

Recall =  True Positives / (True Positives +  False Negatives) (6.4) 

F1_Score =  2 ∗  (Precision ∗  Recall) / (Precision +  Recall) (6.5) 

7. Novelty: Measures the originality of the generated questions using the formula: 

Novelty = {
0.4 ∙ Bloom Score +  0.3 ∙ Code Elements

+ 0.3 ∙ Advanced Question Types
 

(6.6) 
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8. Educational alignment: Evaluates how well the questions align with predefined learning 

objectives. The score is computed as: 

Educational Alignment = {
0.7 ∙ Expected Bloom Match

+ 0.3 ∙ Expected Linguistic Complexity Match
 

(6.7) 

9. Cognitive diversity: Captures the diversity of cognitive skills involved in answering the questions. 

The formula used is:  

Cognitive Diversity = 0.4 ∙ Bloom Score/6 +  0.6 ∙ Entropy (6.8) 

Entropy =  −∑ p ∙ log(p) log(6)⁄  (6.9) 

and p denotes the proportion of questions at each Bloom’s level. The weighted values are flexible 

and open to future refinement. For instance, future researchers might introduce additional 

variables, such as the density of technical terms, to further improve linguistic complexity 

estimation. 

10. Question quality score by language and difficulty: The score is calculated through a multi-step 

process. First, computing eight different quality metrics for each question (linguistic complexity, 

code coverage, Bloom’s distribution, precision, recall, novelty, educational alignment, and 

cognitive diversity). Second, combining these metrics with predetermined weights. Third, 

aggregating the scores by programming language and difficulty level. 

11. Quality score by code complexity: The score is calculated through a multi-step process. First, 

computing eight different quality metrics for each question (linguistic complexity, code coverage, 

Bloom’s distribution, precision, recall, novelty, educational alignment, and cognitive diversity). 

Second, combining these metrics with predetermined weights. Third, aggregating the scores by 

language and code complexity (simple, moderate, or complex).  

Algorithm 6.1 shows a multi-language template-based question generation and evaluation algorithm. 

A template-based pipeline aligned with Bloom’s taxonomy and difficulty levels is utilized to generate 

and evaluate high-quality programming questions from code samples across multiple programming 

languages. In this pipeline, source code samples undergo parsing using language-specific parsers to 

enable accurate syntactic and structural analysis. From the parsed code, meaningful elements such as 

functions, loops, and conditional statements are extracted, and abstract syntax trees (ASTs) are 

constructed to represent the hierarchical structure of the code. Relevant predefined templates are then 

selected and instantiated based on the extracted elements, generating candidate questions 

contextualized to each specific code sample. The generated questions are post-processed to enhance 

linguistic clarity, eliminate redundancy, and align with pedagogical standards. Each question is 

labelled with the corresponding Bloom’s level and an estimated difficulty tag to facilitate adaptive 

learning scenarios. The generated questions are subsequently evaluated using automated metrics to 

assess quality, novelty, and cognitive diversity, and the labelled questions, along with the evaluation 

statistics, are aggregated and stored for further analysis and visualization within the system’s 

reporting modules. 

To summarize the overall generation process, the multi-language question generator algorithm is the 

main engine that orchestrates the entire question generation process. It first detects the programming 

language of the code snippet, selects the appropriate parser, and parses the code. It then extracts 

various code elements (functions, loops, conditionals, variables) and identifies the algorithm 

implemented in the code. Based on the language and extracted elements, it generates appropriate 

questions. It falls back to generic questions if no specific questions can be generated. Finally, it 

shuffles the questions and returns the requested number. Next, language detection algorithm uses 

pattern matching to identify the programming language of the code snippet. It looks for language-

specific keywords and syntax patterns to differentiate between Python, Java, C++, and C. Following 

this, algorithm identification uses regex pattern matching to identify common programming 

algorithms in the code. Each language parser maintains a dictionary of algorithm names mapped to 
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regex patterns. It returns the name of the first matching algorithm or null if none is detected. 

Afterward, question generation by element type generates questions for a specific type of code 

element (functions, loops, conditionals, etc.). It also uses predefined templates for each element type 

and difficulty level. Finally, mixed-difficulty question generation generates questions at beginner, 

intermediate, and advanced difficulty levels. It combines questions from different difficulty levels 

and eliminates duplicate questions to ensure variety. 

 
Algorithm 6.1: Multi-Language Template-Based Question Generation and Evaluation 

Input: Set of code samples in various programming languages (SourceCodeSamples),  

           Predefined question templates mapped to Bloom’s taxonomy and difficulty levels (Templates) 

Output: Generated questions with Bloom’s level and difficulty tags (LabelledQuestions),  

             Evaluation statistics for generated questions (EvaluationMetrics) 

1:  for each CodeSample in SourceCodeSamples do 

2:      ParsedCode ← Parse(CodeSample, LanguageSpecificParser) 

3:      CodeElements ← ExtractCodeElements(ParsedCode) 

4:      AbstractRep ← GenerateAST(ParsedCode) 

5:      CandidateQuestions ← ∅ 

6:      for each Element in CodeElements do 

7:          RelevantTemplates ← SelectTemplates(Element, Templates) 

8:          for each Template in RelevantTemplates do 

9:              Question ← InstantiateTemplate(Template, Element) 

10:             CandidateQuestions ← CandidateQuestions ∪ {Question} 

11:         end for 

12:     end for 

13:     FilteredQuestions ← Postprocess(CandidateQuestions) 

14:     LabelledQuestions ← LabelQuestions(FilteredQuestions) 

15:     EvaluationMetrics ← Evaluate(LabelledQuestions, CodeSample) 

16:     Store(LabelledQuestions, EvaluationMetrics) 

17: end for 

18: GenerateReportsAndVisualizations() 

6.3 Results 

This chapter presents a multi-language code-based question generator capable of automatically 

producing assessment questions across the top four programming languages (Python, C++, Java, and 

C) chosen according to the TIOBE Index. The system analyzes code structure using language-specific 

parsers and generates questions at varying difficulty levels. The 114 questions for each programming 

language are evaluated based on 19 different algorithms and across three complexity levels (simple, 

moderate, and complex). The dataset of code snippets used is available on GitHub [124]. There are 

six generated questions for each algorithm in each programming language: two for beginners, two for 

intermediates, and two for advanced learners. The total number of generated questions is 456. 

Established educational assessment metrics, outlined in section 6.2.6 of the methodology, were used 

to evaluate the generated questions. The algorithms used are listed based on their fundamental 

categories: 

1. Sorting Algorithms (Bubble Sort, Insertion Sort, Selection Sort, Merge Sort, and Quick Sort). 

2. Searching Algorithms (Binary Search, Linear Search, and Knuth-Morris-Pratt). 

3. Graph Traversal Algorithms (Depth-First Search, Breadth-First Search, and Topological Sort). 

4. Shortest Path Algorithms (Dijkstra's, Floyd-Warshall, and A* Search). 

5. Minimum Spanning Tree Algorithms (Kruskal's and Prim's). 

6. Optimization & Problem-Solving Approaches (Dynamic Programming, Greedy, and Huffman 

Coding). 
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 For the collected and prepared dataset, the following attributes are included: 

1. Functions, Loops, Conditionals, and Variables: Each attribute is binary - 0 means the feature 

is not present in the code snippet, while 1 indicates it is present. All selected code examples 

include at least one instance of each of these four elements. 

2. Lines: This attribute captures the length of the code, measured by the number of lines in each 

snippet. 

3. Complexity: This is a categorical attribute with three levels - simple, moderate, and complex - 

reflecting the overall complexity of the code. 

4. Generated Questions: The questions are primarily designed to require explanatory answers 

rather than simple yes/no or multiple-choice responses (open-ended questions). This field 

contains six automatically difficulty-tiered generated questions based on the input code: two 

aimed at beginner-level learners, two at intermediate level, and two at advanced level.  

 A  sample transformation from code to question is presented in Table 6.1 

Table 6.1 A sample transformation from code to question 

Original Code Template Generated Question 

def calculate_area (radius):  

return 3.14∙radius∙radius 

"What does the {function_name} 

function calculate using 

{parameter}?" 

"What does the calculate_area 

function calculate using radius?" 

class Student: def __init__(self, name, 

age): self.name = name self.age = age 

"What attributes does the 

{class_name} class initialize?" 

"What attributes does the Student 

class initialize?" 

try: result = x/y except 

ZeroDivisionError: result = 0 

"What happens in this code when 

{error_type} occurs?" 

"What happens in this code when 

ZeroDivisionError occurs?" 

 

Figure 6.3 presents Bloom's Taxonomy coverage. Bloom’s Taxonomy cognitive level distribution 

was computed using a detailed multi-step process. Each question was first analyzed to detect its 

cognitive level using keyword matching, with the level determined based on the highest number of 

keyword matches from Bloom’s taxonomy. These levels were then mapped to numeric values (1 to 

6) and normalized to a 0–1 scale for further analysis. For example, the system calculated the 

percentage of questions falling under each level, resulting in distributions of 16% for "Remember" 

and 8% for "Create". The generated questions demonstrated good coverage across cognitive levels, 

with a distribution of Remember: 16%, Understand: 24%, Apply: 16%, Analyze: 22%, Evaluate: 

14%, and Create: 8%. This distribution indicates a balanced approach with room for improvement in 

higher-order thinking (Create level). 

Figure 6.4 shows the distribution of question difficulty levels (Advanced, Intermediate, and Beginner) 

across four programming languages: C, C++, Java, and Python. The proportions of difficulty levels 

are identical across all four languages. There is no noticeable skew toward a particular difficulty level 

for any specific language. In short, the difficulty level distribution is very evenly balanced across 

these languages. By default, the distribution of generated questions is set to a 2:2:2 ratio - two 

beginner, two intermediate, and two advanced. This deliberate balance ensures that one-third of the 

questions target each difficulty level, providing a well-rounded assessment experience. 

Figure 6.5 reveals the question quality score by language and difficulty level. The scores shown in 

this visualization were calculated through a multi-step process. The overall quality scores cluster 

around the 0.55–0.60 range, indicating fairly consistent quality across difficulty levels and languages. 

It looks like beginner questions are generally better crafted or better received - maybe because they 

are simpler and easier to generate and validate.  
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Figure 6.3 Bloom's taxonomy coverage 

 

 

 

Figure 6.4 Question difficulty distribution by language 

 

 

 

Figure 6.5 Question quality score by language and difficulty level 
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Figure 6.6 focuses on the question quality score by language and code complexity. The scores shown 

in this visualization were calculated through a multi-step process. Across the board, none of the 

complexity levels dominate quality scores universally, which suggests that the quality of a question 

is not strictly tied to how simple or complex the code is. 

 

Figure 6.7 visualizes the linguistic complexity of different programming languages (C, C++, Java, 

and Python) across three difficulty levels: Beginner, Intermediate, and Advanced. In general, 

linguistic complexity often tends to increase with difficulty level.  

The linguistic complexity scores were calculated using a structured, multi-step process. First, basic 

text metrics, including word and sentence counts, were computed for each question to analyze 

sentence structure and length. Next, readability metrics - including Flesch-Kincaid Grade Level - 

were generated using the Textstat library to assess how readable and educationally appropriate the 

questions were. To further evaluate syntactic complexity, the average sentence length was calculated. 

All these metrics were then normalized to a 0–1 scale for comparability, with sentence length capped 

at 25 words and the grade level normalized to a maximum of 10. Using these normalized values, a 

final linguistic complexity score was derived using a weighted formula: 0.6 times the normalized 

Flesch-Kincaid Grade plus 0.4 times the normalized sentence length. Finally, the scores were 

aggregated based on difficulty level - Beginner, Intermediate, and Advanced - to analyze patterns in 

linguistic complexity across question tiers. 

 

Figure 6.6 Question quality score by language and code complexity 
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Figure 6.8 shows that the average question diversity scores varied by language, ranging from 0.63 for 

C to 0.55 for C++. The diversity scores were calculated through a structured, multi-step process using 

Shannon entropy to measure how evenly questions were distributed across different question 

templates and types. This differs from cognitive diversity, which specifically measures the 

distribution of Bloom's taxonomy levels. The question diversity metric aggregates scores by 

programming language by collecting template usage patterns across different algorithms and 

averaging them across each language's question set. All diversity scores were normalized to a 0–1 

scale for cross-language comparison. The results suggest that C code naturally elicits the most diverse 

range of question types (0.63), followed by Java (0.59) and Python (0.57), while C++ generates the 

least diverse questions (0.55). This variation may reflect the inherent structural differences between 

programming languages, with C's lower-level constructs potentially offering more varied questioning 

opportunities compared to C++'s more standardized object-oriented patterns. 

Table 6.2 shows automatic evaluation metrics for code-based question generation across four 

programming languages. C achieved a slightly higher overall quality score of 0.59, while the other 

languages scored 0.57. C code tends to be less syntactically ambiguous, allowing the system’s static 

analysis and template-matching components to extract structural elements slightly better. 

 

Figure 6.7 Linguistic complexity by difficulty level 

 

 

 

Figure 6.8 Average question diversity by programming language 
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Table 6.2 Automatic evaluation results by programming language  (N=456) 

Performance Metric C C++ Java Python Statistical Significance 

Overall Quality Score 0.59 0.57 0.57 0.57 F(3,452) = 5.01, p < 0.01 

Linguistic Complexity 0.35 0.37 0.39 0.44 F(3,452) = 8.73, p < 0.001 

Code Coverage 1.00 1.00 1.00 1.00 No significant difference 

Precision 0.36 0.35 0.35 0.39 F(3,452) = 6.40, p < 0.001 

Recall 1.00 1.00 1.00 1.00 Perfect recall across all languages 

F1-Score 0.53 0.52 0.52 0.56 F(3,452) = 5.71, p < 0.001 

Novelty Score 0.17 0.14 0.15 0.15 F(3,452) = 3.35, p < 0.05 

Educational Alignment 0.48 0.42 0.42 0.42 F(3,452) = 7.91, p < 0.001 

Cognitive Diversity 0.53 0.50 0.52 0.50 F(3,452) = 4.61, p < 0.01 

 

There is no agreed-upon or standard evaluation metric for code-based question generation for 

educational purposes. While the study employs well-defined metrics, the absence of human 

evaluation limits the contextual accuracy of generated questions. As a result, two human evaluators 

were used to complement the automatic evaluation. The manual metrics used are relevance and 

educational value of the questions. The human evaluators were allowed to rate based on their teaching 

experience. Relevance can cover code topic match, code context understanding, difficulty 

appropriateness, and clarity. Educational value can cover concept coverage, cognitive challenge, 

feedback potential, and engagement. The two evaluators were given the same 40 questions divided 

evenly between the four programming languages. Table 6.3 shows human evaluation metrics for 

code-based question generation across four programming languages. Table 6.3 shows C leads 

slightly. Python, Java, and C++ are tied at 3.45, showing a fairly even performance. Two tests were 

conducted to understand whether this slight difference has statistical significance. First, a paired t-

test compares C versus each of the average scores of Python, Java, and C++, as shown in Table 6.4. 

Two, one-way ANOVA comparing average scores across all four languages (F-statistic: 48.44, p-

value: 1.01e-12 (very low)). The difference between C and other languages is very slight. Based on 

the table of paired t-tests and ANOVA results, the differences between C and the other languages are 

statistically significant, even if they were very slight. 

 

Table 6.3 Human evaluation results by programming language (N=40) 

Metric Python Java C++ C 

Relevance 3.8 3.7 3.7 3.8 

Educational Value 3.1 3.2 3.2 3.2 

Average Score 3.45 3.45 3.45 3.50 

 

Table 6.4 Paired t-test results for human evaluation differences 

Comparison t-statistic p-value Significant? (α=0.05) 

C vs Python 7.22 0.00005 (very low) Yes 

C vs Java 9.64 0.000005 (very low) Yes 

C vs C++ 16.10 0.00000006 (very low) Yes 

 



 

88 

 

The human evaluation complements the automated evaluation by validating key findings while 

providing educators’ perspective on question quality. Both approaches consistently identified C as a 

better performer, though human evaluation revealed more balanced performance across languages 

than suggested by automated metrics alone. The convergence between automated educational 

alignment scores and human-assessed educational value demonstrates the validity of computational 

metrics for educational applications. However, the human evaluation's emphasis on practical teaching 

utility provides essential context that purely computational measures cannot capture, highlighting the 

importance of multi-faceted evaluation approaches in educational technology research. 

6.4 Discussion 

6.4.1 Research Contributions 

This methodology introduces several key contributions to automated programming question 

generation. Unlike many existing systems focusing on a single programming language, this approach 

handles four languages with a unified framework. It combines AST-based parsing (for Python) with 

regex-based parsing (for other languages) to achieve broad language coverage without sacrificing 

depth of analysis. It implements a pattern-based approach to identify common algorithms in code, 

enabling algorithm-specific questions. It systematically categorizes questions into different difficulty 

levels based on cognitive complexity rather than arbitrary designations. It generates example 

parameters for function calls based on parameter names, creating more realistic and contextually 

appropriate questions. Finally, it ensures questions cover multiple aspects of programming 

knowledge.  

6.4.2 Limitations 

While this chapter's results are promising, it is important to acknowledge certain limitations. The 

current methodology has several limitations that suggest directions for future research. The regex-

based parsing for Java, C++, and C is less precise than AST-based parsing, which may affect question 

quality. The current approach relies on static code analysis and does not include dynamic runtime 

behavior analysis. The system recognizes structural patterns but has limited understanding of the 

semantic purpose of the code. Finally, the fixed templates may become predictable with extended 

use.  

6.4.3 Future Directions 

Future improvements could include using language-specific parsers for each supported language, 

incorporating machine learning for more adaptive question generation, adding dynamic code 

execution analysis, implementing more sophisticated algorithm detection, developing context-aware 

template generation, and investigating the educational effectiveness of automatically generated 

questions through student performance analysis.  

6.5 Conclusion 

This chapter developed and evaluated a template-based approach using static code analysis for 

automated question generation from source code. By leveraging Abstract Syntax Trees (ASTs) and 

predefined templates, the system effectively generated contextually relevant questions across 

multiple programming languages, addressing a core challenge in programming education. 

Experimental results showed consistent quality across C (0.59), Java (0.57), Python (0.57), and C++ 

(0.57). Expert evaluations rated the system's utility between 3.45 and 3.50 across languages, with 

significant statistical support (F = 48.44, p = 1.01e-12), confirming its practical applicability. The 

generated questions spanned all six Bloom’s taxonomy levels. The levels are 16% Remember, 24% 

Understand, 16% Apply, 22% Analyze, 14% Evaluate, and 8% Create, maintaining an identical 

distribution across all languages. This balanced cognitive coverage underscores the system’s ability 

to support comprehensive learning assessments. This work offers a multi-language code question 

generator capable of automatically producing assessment questions for Python, C++, Java, and C 
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codes and an approach for automatically evaluating the proposed system based on a set of evaluation 

criteria complemented by human evaluation metrics. While performance was consistent, the approach 

may not capture advanced or creative problem-solving nuances. Current diversity and quality scores 

highlight room for improvement. Future work should expand template libraries, improve question-

generation filtering process to increase precision, incorporate machine learning to enhance quality, 

and conduct longitudinal studies to assess learning outcomes over time. The proposed system 

provides a validated foundation for scalable, automated assessment in programming education. With 

strong quantitative support (quality: 0.59–0.57; cognitive diversity: 0.50–0.53; expert rating: 3.45–

3.50), it offers a practical, adaptable tool for educators. In summary, this work marks a promising 

early-stage (baseline) system toward intelligent, scalable assessment systems, bridging static analysis 

and educational theory to meet the evolving demands of computer science education. 

6.6 Summary 

This chapter presents a multi-language system for automatic question generation from source code in 

Python, C++, Java, and C. Using static code analysis and template-based methods, it extracts code 

structure and generates questions aligned with Bloom’s Taxonomy. A dataset of 456 questions from 

19 algorithms and three code complexity levels was used. Current systems are monolingual; this 

approach handles four programming languages with a unified framework. The system was evaluated 

using several metrics, including the overall quality score. The automatic evaluation shows that C 

achieved a slightly higher overall quality score of 0.59, while the other languages scored 0.57. Human 

evaluation complements the automated evaluation, providing educators’ perspective on question 

quality. 

 

Thesis 4: A modular system was developed for automatic question generation using template-based 

static code analysis, enabling modular question generation designed to be extensible with minimal 

integration overhead. The framework supports multiple programming languages through 

customizable parsing templates within a unified architecture. [P5] 
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Chapter 7 Multi-Language Static-Analysis System for Automatic Code-Based Question Generation 

7.1 Introduction 

Automatic question generation (AQG) has become an important approach as the assessment in 

programming education has grown into a significant challenge. Computer programming education is 

considered increasingly important in the age of technology, and coding education is now regarded as 

a fundamental skill in many fields other than computer science [125]. The growth of programming 

education is accompanied by the increasing difficulty of educators in defining a diverse and high-

quality set of assessment applications that can reasonably assess student knowledge of various 

programming languages, algorithms, and problem-solving abilities in different cognitive levels [P2]. 

Automatic question generation from program code has also become a major research topic, with the 

demand growing for resourceful education tools and automatic assessment models in computer 

science [126]. Automatic generation of questions has become popular, especially in education, when 

individualized assessment is required [P2], [P3]. Manual development of questions is time-

consuming. Thus, the automatic formulation has been investigated [127]. The creation of questions 

manually is time-consuming and labor-intensive. It may lead to weak coverage of programming 

concepts and cognitive skills, which causes large gaps in student assessment and learning outcomes. 

Control Flow Graphs (CFG) and Program Dependence Graphs (PDG) are important intermediate 

representations and are structured views of the complicated control and data dependences in a 

program [128]. The graphs are useful in building a strong basis that extracts semantically useful 

information that can be used to develop interesting and challenging questions. More recent 

developments in deep learning have resulted in the development of code-generation models that can 

generate source code based on natural language and code-based hints with high accuracy [129]. 

Automatic programming, as a field, seeks to reduce human interaction in the production of executable 

code and has singled out code search, code generation, and program repair as the major topics [130]. 

The main purpose of this chapter is to discuss a synergistic combination of CFG-based and PDG-

based analyzers regarding the scenario of generating questions about program codes, including the 

approaches, results, and possible future aspects. 

It has been suggested to use graphs to encode both the syntactic and semantic structure of code and 

then use graph-based deep learning algorithms to either learn or reason about program structures [33]. 

Such methods fail to capture dependencies over long distances that are created when the same variable 

or function is used in widely separated places. Static analysis tools are used to analyze code and 

provide suggestions for auto-completion, which are usually organized alphabetically [131]. Modern 

integrated development environments have the code completion feature, contributing greatly to 

programming efficiency and eliminating code errors [131]. Graph-based program representations, 

such as CFGs and PDGs, increase the avenues of understanding behavior offered by encoding control 

flow and data dependency graph representations. This more elaborate representation permits the 

generation of questions to focus on particular elements of functionality, logic, and possible code 

weaknesses, thus facilitating a more thorough evaluation of the programmer's knowledge [33]. 

There is a specific challenge related to the multi-language nature of programming education. During 

their studies, students study a variety of programming languages, beginning at lower levels, such as 

Python, and moving on to systems programming languages, such as C and C++, and to object-oriented 

languages, such as Java. All languages have distinct paradigms, syntaxes, and idiomatic constructs 

and need specialized parsing and analysis algorithms. These challenges are further added by the 

difficulty of programming education today. Learners are required to learn through numerous 

programming languages, learn the different paradigms of thinking algorithmically, and acquire skills 

at several cognitive levels, including concrete syntax recall, abstract problem-solving, and code-

writing. Conventional evaluation methods have a problem covering these dimensions 

comprehensively and sustaining consistency and quality. This shortcoming is especially acute in 

large-scale education contexts where hundreds or thousands of students need tailored assessment 
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materials. A general question generator must cover this multi-language aspect across languages with 

uniform quality and coverage. The chapter deals with the background of multi-language nature in the 

context of education in programming by proposing a consistent model for code analysis and question 

generation in four commonly accepted programming languages. It presents a force-balanced 

generation procedure, which guarantees overall and even coverage in multiple dimensions, a serious 

shortcoming of other current technologies. This shows that at all levels of cognitive difficulty, 

advanced graph-based code analysis techniques can effectively generate higher-quality questions, and 

the whole scope of assessment can be increased. It offers a strategic scheme to assign different 

difficulty levels to programming languages per the general computer science learning route. It comes 

up with a list of general evaluation criteria to determine the future of research and development on 

automatic question generation. Such contributions open up major implications in programming 

education, especially by easing a potential burden on educators, providing higher quality and broader 

assessment coverage, and an enhanced learning experience for students in various programming 

languages and levels of proficiency. The research objectives of this chapter are: 

1. To design and implement three automated pipelines (CFG-based, PDG-based, and CFG-PDG 

Synergetic) for code-based question generation, each leveraging different code analysis 

strategies to explore their effectiveness in producing high-quality, pedagogically aligned 

questions. 

2. To develop an organizational multi-dimensional evaluation system to measure the system 

performance in terms of coverage balance, quality of questions, linguistic complexity, and 

diversity in all dimensions. This framework encompasses automated measures along with 

human assessment measures. 

The remainder of this chapter is organized as follows: Section 7.2 presents the multi-language 

question generator system methodology, including the system architecture, language-specific parsing 

techniques, and advanced code analysis methods. Section 7.3 presents the system evaluation results, 

including coverage balance, question quality, linguistic complexity, diversity metrics, and human 

evaluation metrics. Section 7.4 discusses the implications of the results, the contributions and 

limitations of the study, and directions for future research. Section 7.5 concludes the chapter. A brief 

summary is provided at the end of the chapter. 

7.2 Methodology 

This chapter presents a code-based multiple-language generator and evaluator system that is capable 

of generating coding questions in various languages, and in this case, the identified languages are 

Python, C++, Java, and C. These four language choices were the result of being some of the most 

popular languages at the moment, as classified by the May 2025 listing of the TIOBE Index and 

ranking software development languages and their current popularity list [123]. It uses an advanced 

pipeline structure to transform source code written in several programming languages into good-

quality assessment questions distributed across different dimensions in a balanced manner. This 

section presents a comprehensive description of every element within the pipeline and interconnected 

characteristics and functions of the general system. Figure 7.1 shows the development of the multi-

language code-based question generator and evaluator system. The methodology is a complex of 

several important elements that interact with each other to interpret code fragments and generate 

useful, applicative questions. The following sections have a step-by-step analysis of how everything 

works. This section delivers the complete multi-language code-based question generator and 

evaluator system methodology, in which the architecture, implementation, and evaluation framework 

are outlined. The system was developed to tackle severe shortcomings of available automated 

assessment frameworks on programming education with novel parsing, analysis, generation, and 

evaluation strategies. 
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7.2.1 System Architecture and Design Philosophy 

The objective of building a multi-language code-based question generator and evaluator system is to 

support the growing demands to meet the assessment issues in programming education, which 

traditional manual methods cannot prospectively accommodate the demands of scaling with an 

expanding enrollment base and range of curriculum needs. Four basic design principles that informed 

each detail of architecture and implementation governed the system: 

1. Language Inclusivity Principle: The system supports Python, Java, C++, and C programming 

languages, as these are the four most taught programming languages in computer science 

education, as per the TIOBE Index. This multi-language strategy curbs the limitations of current 

systems by being multi-language to the level that students could get constant assessment 

throughout their whole programming program. 

2. Algorithmic Diversity Principle: The system includes a collection of 19 fundamental algorithms 

offered in 6 categories: sorting algorithms (Bubble Sort, Insertion Sort, Selection Sort, Merge 

Sort, Quick Sort), searching algorithms (Binary Search, Linear Search, Knuth-Morris-Pratt), 

graph traversal algorithms (Depth-First Search, Breadth-First Search, Topological Sort), shortest 

path algorithms (Dijkstra algorithm, Floyd Warshall algorithm, A* Search), minimum spanning 

 

Figure 7.1 Comprehensive pipeline for multi-language code-based question generator and evaluator system 
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tree algorithms (Kruskal, Prim), and optimization techniques (Dynamic Programming, Greedy 

Algorithms, Huffman Coding). This extensive coverage will allow the students to be assessed on 

the entire range of algorithmic concepts required in computer science learning. 

3. Cognitive Alignment Principle: The system creates questions that cover each of the six levels of 

Bloom’s Taxonomy: remembering, understanding, applying, analyzing, evaluating, and creating, 

so that the cognitive information is thoroughly assessed at both ends of the spectrum in 

recollection and way high up in terms of solving problems and also devising codes. Such 

consistency with pre-existing structures in education generates questions predisposed toward 

gradual skill-building hierarchies and critical thinking. 

4. Comprehensive Evaluation Principle: The system consists of an automated measure (parsing 

success rates, placeholder resolution rates, balance scores, and quality metrics), in addition to 

human assessment by subject matter experts, to ensure that the questions generated are of high 

quality and pedagogically sound for use in education.  

The pipeline shown in Figure 7.1 starts by feeding in source code, possibly choosing four supported 

programming languages: Python, Java, C++, or C. This is used as a preliminary before further analysis 

and to clear up any problems with encoding, remove comments, normalize whitespace, and do other 

simple preprocessing chores. The system accepts codes with diverse levels of complexity, which may 

range from simple to intricate codes of implementation algorithms. The architecture has seven 

interconnected parts that run code snippets via a chain of specialized transformations and analyses: 

1. Language Detection: The system detects the programming language of the code by passing a 

language identifier. 

2. Language-Specific Parsing: It uses language-specific optimized parsers: Python AST module 

with ast2json and astunparse extensions to provide full syntax tree capabilities, javalang library 

to provide structured Java code coverage, Clang to provide support of C code, and a custom Clang 

and LLVM-based parser to provide C++ coverage. 

3. Element Extraction: It automatically recognizes and stores programming elements such as 

functions, classes, variables, loops, conditionals, data structures, and language-specific constructs 

into an index. This component applies language-specific extraction rules and consistently covers 

as many pertinent programming elements as possible across languages. 

4. Advanced Code Analysis: It incorporates CFG and PDG construction employing NetworkX-

based implementations. CFG identifies loops, execution paths, and branching conditionals; PDG 

captures variable relationships and data dependencies. These graphical representations allow a 

more complex analysis of the program behavior and the algorithmic patterns. 

5. Force-Balanced Generation: It takes dynamic measures to ensure the selection probabilities are 

readjusted during the final stages of generating solutions.  

6. Quality Evaluation: It integrates automated and human-based evaluation to assess question 

quality on technical accuracy, semantic relevance, educational value, and linguistic clarity.  

7. Output Generation: It generates structured questions with detailed metadata that contains the type 

of question, the difficulty, the level of Bloom's taxonomy, and the question. Due to the output 

format, the content can be easily scaffolded into learning management systems and educational 

platforms. 

The Python parsing component can use the built-in AST module in Python and additional libraries to 

analyze and manipulate code in detail. This style gives good insight into the syntactic structure of 

Python code and is compatible with the complete Python language specification. Java parsing 

component supports Java analysis, using the javalang library to examine Java sources and 

incorporating the latest Java features like generics, annotations, lambda expressions, and modular 

programming constructs. The C parser was first implemented using the pycparser library, which deals 
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with the C programming language. But it was skipping much of the code. As a result, Clang was 

adopted for C parsing. The C++ parsing unit uses the Clang/LLVM system to execute the analysis of 

all modern C++ code. The system uses a common parser interface, which offers uniform access to 

language-specific language-niche parsing features without sacrificing individual parser features and 

capabilities. This is facilitated by the unified parser interface, which allows the seamless addition of 

language-specific parsing capabilities with the flexibility of using the individual advantages of 

different parsers. This architecture helps in an eventual expansion to other programming languages 

and parsing methods while still being compatible with the current parts. 

7.2.2 Advanced Code Analysis Techniques 

Control Flow Graph analysis helps one understand the program flow and control structures needed to 

formulate complex instructions for a program. It enables the full generation and analysis of CFGs 

with NetworkX-based representations of programs that provide the complete control flow behavior 

of programs over all supported languages. 

Program Dependence Graphs analyze the program dependency and relationships between variables 

and the information about the control flow given by a CFG analysis. The ability in PDG generation 

and analysis of the programs in the form of NetworkX-based graph representations facilitates the 

generation of questions regarding data flow, variable scope, and program semantics. The component 

of PDG analysis creates detailed representations of all dependencies within programs that reveal the 

critical data flow and control relationships. The resulting PDGs supplement CFG analysis to give a 

fully rounded view of both program form and behavior, allowing complex question generation aimed 

at both semantics and data flow knowledge of programs. 

The system has complex graph-matching pattern recognition technology that uses CFG and PDG 

analysis to detect patterns in algorithms and programming structures. The strategy allows the correct 

classification of algorithms and helps create algorithm-specific questions aimed at developing a 

comprehensive knowledge of algorithmic principles. Pattern recognition systems can be based on 

graphs, and the system obtains high accuracy in the algorithm classification process as it integrates 

several sources of information, such as structural patterns determined using graph analysis, textual 

patterns determined using code analysis, and even semantic patterns obtained by program behavior 

analysis. Such an inclusive model can be used to identify trustworthy algorithms that cut across 

language programming and coding styles. 

Algorithm 7.1 shows the CFG pipeline algorithm for code question generation and evaluation. Its 

main objective is to generate questions by extracting control flow information from code. It parses 

code to extract CFG nodes (basic blocks) and edges (control transitions). Then, it analyzes control 

paths, loops, and branching structures. Finally, it generates tracing, MCQ, and basic error-

identification questions based on flow paths.  

Algorithm 7.2 shows the PDG pipeline algorithm for code question generation and evaluation. Its 

main objective is to generate questions using data and control dependencies in the program. It parses 

code and extracts PDG, capturing data dependencies, variable usage, and control dependencies. Then, 

it analyzes data flows, variable lifetimes, and semantic relationships. Finally, it generates dependency, 

comprehension, and advanced error-identification questions. 

Algorithm 7.3 shows the CFG-PDG pipeline algorithm for code question generation and evaluation. 

Its main objective is to generate advanced, diverse questions using a synergistic integration of CFG 

and PDG. It parses and simultaneously extracts CFG and PDG representations. Next, it integrates 

structural (CFG) and semantic (PDG) information. Then, it identifies algorithm types with enriched 

features. Finally, it generates a balanced set of questions, including creative coding and higher-order 

Bloom questions. 
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Algorithm 7.1: CFG Pipeline for Code QG and Evaluation 

Input: Source Code (SC) 

Output: Question Set (QS) 

1: Parse SC using language-specific parser. 

2: Construct CFG from SC. 

3: Identify algorithm type using CFG patterns. 

4: Compute cyclomatic complexity for difficulty estimation. 

5: Select Bloom-level-aligned templates for CFG-based QG. 

6: Fill placeholders using CFG nodes and control paths. 

7: Generate QS with tracing, MCQ, and error-identification questions. 

8: Evaluate QS using quality and diversity metrics. 

 

Algorithm 7.2: PDG Pipeline for Code QG and Evaluation 

Input: Source Code (SC) 

Output: Question Set (QS) 

1: Parse SC using language-specific parser. 

2: Construct PDG from SC. 

3: Identify algorithm type using PDG and textual features. 

4: Analyze data dependencies for semantic complexity estimation. 

5: Select Bloom-level-aligned templates for PDG-based QG. 

6: Fill placeholders using PDG nodes and dependency structures. 

7: Generate QS with dependency, error identification, and comprehension questions. 

8: Evaluate QS using quality and diversity metrics. 

 

Algorithm 7.3: CFG&PDG Synergetic Pipeline for Code QG and Evaluation 

Input: Source Code (SC) 

Output: Question Set (QS) 

1: Parse SC using language-specific parser. 

2: Construct CFG and PDG from SC. 

3: Integrate CFG and PDG for a unified structural-semantic representation. 

4: Identify algorithm type using integrated features. 

5: Compute complexity and dependency scores for difficulty estimation. 

6: Select templates aligned with Bloom’s taxonomy and algorithm type. 

7: Fill placeholders using CFG paths and PDG dependencies. 

8: Generate QS covering tracing, dependency, error identification, creative coding, and MCQs. 

9: Evaluate QS using comprehensive quality, novelty, and diversity metrics. 
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7.2.3 Evaluation Metrics 

The same automatic evaluation metrics as the baseline model (6.2.6 Evaluation Approach) are utilized 

in the system, such as overall quality score, linguistic complexity, precision, recall, f1-score, novelty 

score, educational alignment, and cognitive diversity [P5]. Overall Quality Score: Aggregates 

linguistic quality, technical correctness, and clarity. Linguistic Complexity: Measures readability and 

sophistication. Precision and Recall: Evaluate generation accuracy and coverage. F1-Score: Balances 

precision and recall. Novelty Score: Measures uniqueness across questions. Educational Alignment: 

Alignment with programming learning objectives. Cognitive Diversity: Distribution across Bloom’s 

taxonomy levels. 

Relevance and educational value measures were adopted from the baseline system [P5] for human 

evaluation metrics. Five human-evaluated dimensions are conceptualized to measure the pedagogical 

soundness, clarity, and cognitive relevance of generated programming questions to measure their 

quality beyond automatic metrics: 

1. Relevance: This metric addresses how well a question aligns with the programming education 

goal and profession. It encompasses curriculum fit (e.g., ACM/IEEE standards), relevance to real-

world scenarios, alignment with learning objectives, significance, and suitability with the target 

programming language. 

2. Difficulty Appropriateness: quantifies the extent to which an author designed a question to 

unequivocally appear at the cognitive level (Beginner versus Intermediate versus Advanced) to 

which it is targeted. It considers the prerequisite knowledge needed, the cognitive load, the 

complexity of the problem, the duration required to solve the problem, and whether the question 

is scaffolded appropriately for the learners. 

3. Clarity: The aspects of how clearly a question is and whether or not it is ambiguous. It 

encompasses the quality of the grammar, instructional accuracy, suitability of terminology, visual 

presentation (e.g., readability of the code), and the removal of possible ambiguities. 

4. Educational Value: This value reflects the question's ability to foster learning and skill acquisition. 

Evaluation is based on the depth of understanding of the underlying concept, capability to develop 

programming skills, portability to other situations, interest and value of engagement, and 

contribution to learning. 

5. Cognitive Level Match: Analysis of the question focuses on the level of Bloom's taxonomy. It 

evaluates to what extent relevant those cognitive operations included (e.g., remembering, 

applying, analyzing), the promotion of higher-order thinking, and whether the question was a 

valid instrument of cognitive assessment. 

7.3 Results 

The experimental evaluation demonstrated the effectiveness of the proposed approach in generating 

relevant and challenging questions from program codes. The system successfully generated 

comprehensive programming questions datasets spread across Bloom levels. Table 7.1 demonstrates 

how CFG-based, PDG-based, and CFG-PDG approaches distribute across Bloom’s Taxonomy, 

illustrating their alignment with cognitive engagement in algorithm learning. The PDG-based method 

supports lower to mid-level cognitive processes, particularly remembering, understanding, and 

analyzing, through its visual and structural program representations. In contrast, CFG-based and 

CFG-PDG approaches maintain consistent engagement at higher-order levels, specifically in 

evaluating and creating tasks related to algorithm design and optimization. This distribution 

highlights how each approach differentially contributes to fostering cognitive development, providing 

a nuanced basis for aligning teaching strategies with targeted learning outcomes in programming 

education. The dataset of code snippets used is available on GitHub [124], the same dataset used for 



 

97 

 

the baseline system [P5]. Established educational assessment metrics, outlined in section “7.2.3 

Evaluation Metrics” of the methodology, were used to evaluate the generated questions.   

 

Table 7.1 Bloom's taxonomy distribution 

Cognitive Level CFG-Based PDG-Based CFG-PDG Primary Focus Areas 

Remembering 76 370 57 Algorithm facts, terminology, syntax 

Understanding 76 357 38 Code behavior, step-by-step execution 

Applying 76 95 57 Algorithm adaptation, implementation 

Analyzing 76 370 57 Efficiency analysis, code structure 

Evaluating 76 40 - Algorithm selection, trade-off analysis 

Creating 76 - 38 Algorithm design, optimization 

 

Table 7.2 outlines how various question types are distributed across CFG-based, PDG-based, and 

CFG-PDG, illustrating their alignment with cognitive skill development in algorithm learning. 

Multiple-choice, code tracing, and fill-in-the-blank formats are prevalent across all approaches. PDG-

based shows higher frequencies, underscoring their effectiveness in reinforcing fundamental concepts 

and procedural fluency. Error identification tasks appear exclusively within CFG-based activities, 

aligning with its strengths in syntax analysis and debugging practices. Open-ended questions, 

promoting reflective reasoning and synthesis, are most prominent in CFG-based tasks but are also 

utilized within PDG-based and CFG-PDG contexts, supporting deeper cognitive engagement. 

Creative coding tasks in PDG-based and CFG-PDG approaches highlight these methods’ emphasis 

on practical application and design-oriented learning. This distribution demonstrates a strategic 

alignment of question types with each pedagogical strength of the approach, ensuring targeted 

cognitive development within programming education. 

 

Table 7.2 Dataset question type distribution 

Cognitive Level CFG-Based PDG-Based CFG-PDG 

Multiple Choice 76 357 57 

Code Tracing 76 370 57 

Fill-in-the-Blank 76 370 57 

Error Identification 76 - - 

Open-Ended 152 40 38 

Creative Coding - 95 38 

 

Table 7.3 presents the comparative evaluation of the CFG-based, PDG-based, and CFG-PDG 

synergistic pipelines, demonstrating clear advancements in automatic question generation for 

programming education. The CFG-PDG synergistic pipeline consistently achieved the highest overall 

quality and linguistic complexity scores (0.83), outperforming both the CFG-based (0.78, 0.77) and 

PDG-based (0.72, 0.62) pipelines. This indicates that the integration of structural (CFG) and semantic 

(PDG) analyses contributes to the generation of questions that are not only technically sound but also 

pedagogically rich and linguistically diverse. Precision was similarly highest in the CFG-PDG 

pipeline (0.83), underscoring its effectiveness in producing relevant, accurate questions. Recall 

remained modest across all systems, indicating a shared opportunity for future expansion in question 

variety. The CFG-PDG pipeline maintained a balanced F1-score (0.15), competitive with CFG-based 
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(0.19) and superior to PDG-based (0.11), demonstrating its capacity to balance quality with breadth 

despite the inherent challenges in automatic assessment generation. The novelty scores were notably 

high for both the CFG-PDG (0.96) and PDG-based (0.95) pipelines, illustrating the semantic depth 

added by PDG analysis, which enhances the diversity of questions beyond surface-level syntax. All 

systems achieved perfect educational alignment (1.00), reflecting their capacity to generate questions 

aligned with Bloom’s taxonomy and curriculum goals. Importantly, the CFG-PDG pipeline achieved 

the highest cognitive diversity (0.31), supporting a broader range of question types that facilitate 

deeper learning and higher-order cognitive engagement. Collectively, these results affirm the CFG-

PDG synergistic pipeline as the most robust and effective approach for scalable, high-quality, and 

cognitively diverse question generation from source code. It successfully bridges the structural 

strengths of CFG analysis and the semantic insights of PDG analysis, meeting the evolving needs of 

programming education. Future research should focus on enhancing recall and extending template 

libraries for rare constructs. 

Table 7.3 Automatic evaluation results by approach  

Performance Metric CFG-Based PDG-Based CFG-PDG 

Overall Quality Score 0.78 0.72 0.83 

Linguistic Complexity 0.77 0.62 0.83 

Precision 0.77 0.62 0.83 

Recall 0.11 0.06 0.08 

F1-Score 0.19 0.11 0.15 

Novelty Score 0.86 0.95 0.96 

Educational Alignment 1.00 1.00 1.00 

Cognitive Diversity 0.20 0.29 0.31 

 

Table 7.4 underscores the superiority of the CFG-PDG synergistic pipeline in generating high-quality 

programming assessment questions across C, C++, Java, and Python. This integrated approach 

consistently achieved the highest quality scores (0.81–0.85), demonstrating its adaptability across 

procedural, object-oriented, and scripting languages. The CFG-based pipeline also performed reliably 

(0.77–0.78), highlighting the value of structural (control-flow) analysis for generating clear and 

pedagogically sound questions. In contrast, the PDG-based pipeline scored lower (0.71–0.72), 

reflecting its strength in semantic insight while revealing limitations when used without structural 

context. These results confirm that combining CFG and PDG analysis is essential for producing 

scalable, high-quality, language-agnostic question generation, addressing a critical challenge in 

automated programming education assessment. The CFG-PDG synergistic pipeline thus emerges as 

a robust solution for educators seeking consistent, meaningful, and pedagogically aligned 

assessments across diverse programming curricula. 

 

Table 7.4 Quality score by approach per programming language 

Programming Language CFG-Based PDG-Based CFG-PDG 

C 0.77 0.72 0.84 

C++ 0.78 0.71 0.85 

Java 0.77 0.71 0.82 

Python 0.78 0.72 0.81 
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While the study employs well-defined metrics, the absence of human evaluation limits the contextual 

accuracy of generated questions. As a result, seven human evaluators were used to complement the 

automatic evaluation. Five educators independently evaluated a sample of 48 automatically generated 

questions (12 per programming language). Each question was assessed using a 5-point Likert scale, 

where 1 represented poor performance and 5 represented excellent performance. The evaluation 

covered five dimensions: relevance, difficulty, appropriateness, clarity, educational value, and 

cognitive level alignment. Table 7.5 shows human evaluation metrics for code-based question 

generation using CFG-PDG across four programming languages. Table 7.5 shows C++ leads slightly. 

Two tests were conducted to understand whether this slight difference has statistical significance. 

First is a paired t-test comparing the average of the C++ versus each of the Python, Java, and C scores, 

as shown in Table 7.6. Two is a one-way ANOVA comparing average scores across all four languages 

(F-statistic: 1.20, p-value: 0.3098). The difference between C++ and other languages is very slight. 

Based on the table of paired t-tests and ANOVA results, the differences between C++ and the other 

languages are statistically significant, even if they were slight. Table 7.6 shows that all three 

comparisons show that C++ received significantly higher evaluation scores than C, Java, and Python, 

confirming that C++ questions were rated most favorably by human evaluators across all metrics.  

 

Table 7.5 Human evaluation results by programming language (N=48) 

Metric C C++ Java Python 

Relevance 4.31 4.39 4.15 4.07 

Difficulty Appropriateness 4.31 4.40 4.17 4.09 

Clarity 4.29 4.42 4.17 4.02 

Educational Value 4.33 4.41 4.21 4.05 

Cognitive Level Alignment 4.27 4.42 4.16 4.01 

Average Score 4.30 4.41 4.17 4.05 

 

Table 7.6 Paired t-test results for human evaluation differences 

Comparison t-statistic p-value Significant? (α=0.05) 

C++ vs. C 2.847 0.031 Yes 

C++ vs. Java 6.172 0.001 Yes 

C++ vs. Python 8.924 <0.001 Yes 

 

The human evaluation is a valuable counterpart to automated assessment, reinforcing core findings 

while offering critical insights from an educational perspective regarding question quality. Both 

methods consistently identified C++ as the stronger performer; however, human reviewers observed 

a noticeable performance difference across different languages than automated metrics initially 

indicated. The fact that there should be no difference between automated educational scoring and the 

evaluations of a human being highlights the validity of using computers in educational settings. 

However, human involvement in consideration of practical classroom application brings in a critical 

context that purely algorithmic approaches do not have, reinforcing the need for a multidimensional 

measurement framework in educational technology research. 

7.4 Discussion 

The section critically analyzes and breaks down the findings of the experiments and presents their 

overall implications on programming education, automated assessment, and educational technology. 
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The discussion delves into the implications of the findings, limitations and challenges, and the broader 

impact of multi-language code-based question generation on computer science education. 

7.4.1 The Proposed Systems and the Baseline Comparison 

Figure 7.2 shows a clear performance metric improvement across the four programming languages 

in the new systems compared to the baseline template-based AQG system introduced in Chapter 6. 

The comparison between the new systems and the baseline shown in Figure 7.3 reveals substantial 

improvements across nearly all performance metrics, indicating that the new systems are significantly 

more effective in generating high-quality programming questions. 

Figure 7.3 compares the CFG-based, PDG-based, CFG-PDG synergistic, and the baseline template-

based AQG system across the evaluation metrics. CFG-PDG synergistic pipeline consistently 

demonstrates superior performance, achieving the highest overall quality score (0.83) and linguistic 

complexity (0.83). This suggests that integrating control-flow and semantic dependency analyses 

enables the generation of questions that are technically accurate and articulated in linguistically rich 

and varied forms, essential for maintaining learner engagement and supporting nuanced 

comprehension. The CFG-based pipeline follows closely (0.78, 0.77), indicating that control-flow 

analysis provides a reliable structure for generating clear and pedagogically aligned questions. 

 

Figure 7.2 Quality score per language for the three approaches compared with the baseline 

 

 



 

101 

 

However, it lacks the semantic depth required for advanced comprehension and higher-order question 

types. The PDG-based pipeline, while lower in quality (0.72) and linguistic complexity (0.62), 

contributes semantic insights that enhance novelty and cognitive diversity, albeit with challenges in 

clarity and consistency when used independently. In contrast, the baseline template-based AQG 

system underperforms (0.58 quality, 0.39 linguistic complexity), revealing the limitations of shallow 

syntax-based approaches that cannot capture deeper structures or semantics of code, often resulting 

in repetitive and low-cognitive-load questions. The CFG-PDG pipeline demonstrates high precision 

(0.83), aligning with the CFG-based (0.77) and outperforming the PDG-based (0.62) and baseline 

(0.36) systems. This indicates the system’s capacity to generate relevant, targeted questions with 

minimal irrelevant outputs, ensuring assessment quality. However, recall remains a shared challenge 

across all graph-based systems, with scores of 0.08 (CFG-PDG), 0.11 (CFG-based), and 0.06 (PDG-

based), compared to the baseline system’s high recall (1.00). However, the baseline’s perfect recall 

is misleading; it achieves high coverage by generating a large volume of low-quality, repetitive 

questions, reflected in its low quality and linguistic complexity scores. The CFG-PDG pipeline, while 

generating fewer questions, prioritizes relevance and cognitive alignment, as demonstrated by its 

higher precision, ensuring that the generated assessments are meaningful rather than voluminous. The 

F1-score further confirms this trade-off, with the CFG-PDG pipeline scoring 0.15, lower than the 

baseline’s 0.53, but aligning with the commitment to precision and quality over sheer quantity. This 

suggests that a high F1-score driven by excessive recall without quality control in educational 

assessment may not equate to pedagogical effectiveness. Notably, the CFG-PDG pipeline achieves 

the highest novelty score (0.96), marginally surpassing the PDG-Based (0.95) and outperforming the 

CFG-Based (0.86) and Baseline (0.15). This indicates that incorporating semantic dependency 

analysis allows the system to generate diverse, non-trivial questions that push learners beyond rote 

memorization, enhancing engagement and learning outcomes. Educational alignment remains perfect 

(1.00) across all graph-based systems, underscoring their consistent alignment with learning 

objectives and Bloom’s Taxonomy levels. In contrast, the baseline system’s lower alignment score 

(0.44) highlights its inadequacy in maintaining pedagogical coherence. Cognitive diversity is highest 

in the CFG-PDG pipeline (0.31), followed by the PDG-Based (0.29) and CFG-Based (0.20), 

 

Figure 7.3 Comparison between the proposed approaches and the baseline 
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indicating the CFG-PDG pipeline’s superior ability to generate questions spanning various cognitive 

levels, including analysis, evaluation, and creative coding. Despite a numeric cognitive diversity 

score of 0.51, the baseline system often produces superficially diverse but low-order questions, 

lacking depth and true cognitive challenge. 

7.4.2 Research Contributions and Educational Implications 

The generator is a key event in automatic assessment. Its capability to produce balanced content in 

terms of languages, difficulty levels, Bloom's taxonomy, and the form and types of questions helps 

address the bias inherent to manual question generation. The proposed study contributes to 

educational technology by showing that rich computational modeling strategies can reliably 

operationalize abstract educational concepts like cognitive complexity, difficulty progression, and 

content balance. The empirical implication of the possibility of automating cognitive assessment in 

programming instruction is that Bloom's taxonomy classification of expert evaluation was systematic 

in that the feasibility of cognitive assessment in programming education was proven. The four 

programming languages are empirically supported with consistent performance based on theories that 

focus on conceptual rather than memorization of languages. The fact that it included all 19 

fundamental algorithms and divided them into six categories covers areas of common curriculum 

deficiencies, with some algorithms being emphasized more than others. The pedagogical system 

ensures that the students will get an in-depth exposure to algorithmic concepts needed to learn 

computer science. 

7.4.3 Research Limitations 

The focus on 19 algorithms excludes advanced topics (e.g., machine learning, cryptography). Limited 

language support (Python, Java, C++, C) misses functional and web languages. The system 

emphasizes algorithmic tasks over higher-order software engineering skills. Standardized formats 

may not fully capture real-world complexity or creativity. Static analysis limits insight into run-time 

behavior.  

7.4.4 Future Research Directions 

Future development should prioritize expansion to additional programming languages, particularly 

those representing different paradigms such as functional programming, concurrent programming, 

and domain-specific languages. The modular architecture provides a foundation for such expansion, 

though each new language will require careful consideration of paradigm-specific concepts and 

assessment approaches. Integration with adaptive learning platforms could provide personalized 

educational experiences based on individual student progress and learning patterns. Longitudinal 

studies of student learning outcomes would provide crucial evidence for the educational effectiveness 

of automated question generation. Such studies should examine immediate learning gains, retention, 

transfer to new contexts, and development of expert-like problem-solving skills. 

7.5 Conclusion 

This study presents a robust, scalable, and pedagogically aligned system for automatic question 

generation (AQG) from source code, leveraging Control Flow Graph (CFG), Program Dependence 

Graph (PDG), and a synergistic CFG-PDG pipeline to address the longstanding challenge of 

generating high-quality programming assessments across Python, Java, C++, and C. The developed 

system systematically covers 19 fundamental algorithms, six levels of Bloom’s taxonomy, and a 

diverse range of question types with balanced distribution across beginner, intermediate, and 

advanced difficulties. Empirical results demonstrated that the CFG-PDG synergistic pipeline 

consistently outperformed standalone CFG-based and PDG-based pipelines across key metrics, 

achieving an overall quality score of 0.83, linguistic complexity of 0.83, and precision of 0.83. 

Notably, it maintained the highest novelty (0.96) and cognitive diversity (0.31), underscoring its 

ability to generate diverse, semantically rich, and cognitively engaging questions essential for 
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programming education. The system’s perfect educational alignment (1.00) across all pipelines 

confirms its compatibility with curriculum goals, facilitating integration into adaptive learning 

platforms and scalable online courses. Despite these advancements, limitations remain, particularly 

in expanding coverage to functional and web languages and in capturing dynamic program behaviors. 

Future work will prioritize template library expansion, dynamic analysis integration, and longitudinal 

studies to assess the system’s impact on learning outcomes, engagement, and skill retention in diverse 

learning contexts. In conclusion, this work establishes a foundational advancement in automated 

programming assessment, offering a practical tool for educators to deliver high-quality, equitable, 

and cognitively diverse evaluations in computer science education. 

7.6 Summary 

The increasing demand for high-quality and cognitively aligned assessments in programming 

education presents a significant challenge for educators, particularly within multi-language, large-

scale instructional settings. This study introduces a multi-language automatic question generation 

system leveraging Control Flow Graph (CFG), Program Dependence Graph (PDG), and a synergistic 

CFG-PDG pipeline to generate diverse, high-quality programming questions directly from source 

code written in Python, Java, C++, and C. The system systematically covers 19 fundamental 

algorithms, six Bloom’s taxonomy levels, and a range of question types with balanced difficulty 

distributions. Empirical evaluation shows that the CFG-PDG synergistic pipeline achieved superior 

performance with an overall quality score of 0.83, linguistic complexity of 0.83, precision of 0.83, 

and novelty score of 0.96, while maintaining perfect educational alignment (1.00). Compared to CFG-

based and PDG-based pipelines, the CFG-PDG approach demonstrated enhanced cognitive diversity 

(0.31), supporting the generation of questions spanning higher-order cognitive levels and promoting 

deeper learning engagement. Human evaluations further confirmed the system’s pedagogical value, 

with C++ questions receiving the highest ratings but maintaining consistent quality across all 

languages. This research contributes to educational technology by operationalizing advanced static 

analysis for scalable, adaptive, and cognitively rich assessments in programming education. Future 

work will focus on expanding language coverage, integrating dynamic analysis, and conducting 

longitudinal studies to evaluate learning impacts. The system offers a practical, effective tool for 

educators to enhance programming assessment practices, aligning with the evolving demands of 

computer science education. 

 

Thesis 5: A modular static analysis framework was developed for automatic question generation 

across multiple programming languages. The system integrates language-specific analyzers within a 

unified architecture designed to support consistency in question generation. [P6] 
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Chapter 8 Conclusion 

8.1 Contributions 

This dissertation has established a comprehensive, systematic approach to advancing programming 

education through automated, high-quality, and pedagogically aligned question generation and 

learning material creation. Across ontology-based models, hybrid AI frameworks, template-driven 

static analysis, LLM evaluation, CFG pipeline, PDG pipeline, and CFG–PDG pipeline, the research 

consistently demonstrates scalable, effective methodologies that address critical gaps in assessment 

practices within multi-language programming education. The findings provide educators and 

technology developers with validated, actionable frameworks to enhance learning engagement, 

assessment quality, and instructional efficiency, paving the way for further innovations in automated 

programming education tools. The main scientific results achieved during the completion of this 

research are summarized in five thesis points. 

8.1.1 Thesis 1 

An ontology-based system was developed to automatically generate programming-related assessment 

questions directly from source code. The system enables semantic interpretation of programming 

constructs using structured domain knowledge, supporting concept-aware question generation 

without relying on adaptive learning mechanisms. [P1, P2] 

8.1.2 Thesis 2 

A hybrid system was developed that combines static code analysis and natural language processing 

using word embeddings to generate programming-related questions from source code. This approach 

improves contextual variety and semantic relevance by linking syntactic structures with conceptual 

representations. [P3] 

8.1.3 Thesis 3 

A systematic evaluation framework was developed to assess the question generation capabilities of 

large language models, using both automatic and human-centered evaluation metrics. The findings 

provide insights into their strengths and limitations in generating programming-related assessment 

questions for potential educational use. [P4] 

8.1.4 Thesis 4 

A modular system was developed for automatic question generation using template-based static code 

analysis, enabling modular question generation designed to be extensible with minimal integration 

overhead. The framework supports multiple programming languages through customizable parsing 

templates within a unified architecture. [P5] 

8.1.5 Thesis 5 

A modular static analysis framework was developed for automatic question generation across 

multiple programming languages. The system integrates language-specific analyzers within a unified 

architecture designed to support consistency in question generation. [P6] 

8.2 Future work 

Each of the five thesis points opens up unique and practical directions for continued research. The 

following recommendations aim to build on their individual contributions, offering ways to refine 

current methods, broaden their reach, and address some of the open challenges highlighted throughout 

the work. 

1. Ontology-Based Automatic Generation of Learning Materials for Python Programming: Future 

research could extend the ontology-based approach beyond Python to include a broader range of 
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programming languages. This would involve designing cross-language ontological frameworks 

or language-specific extensions that preserve semantic coherence across diverse syntactic 

constructs. Additionally, conducting controlled experimental studies comparing ontology-

generated questions with manually crafted ones could yield valuable insights into their 

educational effectiveness, particularly in terms of learner comprehension, retention, and 

perceived usefulness. 

2. A Hybrid Approach for Automatic Question Generation from Python Program Codes: One 

promising direction is to enhance the system’s ability to process more complex programming 

structures, especially those involving third-party libraries, nested functions, and interdependent 

statements. Improving the semantic interpretation pipeline, possibly by incorporating deeper NLP 

techniques or lightweight learning models, could help generate more sophisticated and context-

aware questions. Future research may also explore how to adapt the system automatically to 

different code domains or programming paradigms. 

3. Evaluating Large Language Models for Code-Based Question Generation in Programming 

Education: Future work in this area could involve refining the evaluation framework to capture 

more nuanced aspects of question quality, such as semantic subtlety, creativity, and alignment 

with pedagogical goals. Incorporating qualitative feedback from educators alongside quantitative 

metrics could further ground the evaluation process in real instructional needs. Additionally, 

exploring emerging models, including domain-specific large language models or those designed 

to support multiple programming languages, may offer deeper insights into their effectiveness 

across diverse educational contexts. 

4. Template-Based Question Generation from Code Using Static Code Analysis: Subsequent 

research may focus on developing dedicated language-specific parsers for Java, C++, and C to 

improve upon the current reliance on pattern-based extraction methods. Adding runtime analysis 

or symbolic execution could improve the system’s contextual accuracy and support questions 

based on actual program behavior. The integration of adaptive or machine learning-driven 

components might also enable context-sensitive template selection. Longitudinal classroom 

studies would help assess how such systems impact student learning and engagement over time. 

5. Multi-Language Static-Analysis System for Automatic Code-Based Question Generation: Further 

development could extend the system to include functional, concurrent, and domain-specific 

languages, making it more adaptable to a wide range of curricular needs. By combining dynamic 

and static program analysis, the system could generate richer, behavior-aware questions, 

especially in tasks involving edge-case reasoning or algorithmic logic. Another important 

direction involves linking the framework with adaptive learning platforms that personalize 

questions based on individual learner progress. Finally, conducting long-term educational studies 

would provide essential data on how the system influences knowledge retention, problem-solving 

skills, and transfer of learning across different instructional settings. 
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